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Abstract 
In this report, a combined variable speed limit and lane change traffc fow controller is developed 
using the cell transmission traffc fow model, which can provide consistent improvement in traf-
fc mobility, safety and the environmental impact. The controller is then extended to coordinate 
with the ramp metering controller which maintains the fow rates on both mainline and on-ramps 
of highway. Furthermore, we investigate the stability properties of the cell transmission model 
under all possible traffc fow scenarios, with consideration of the capacity drop phenomenon. 
The analysis is used to motivate the design of variable speed limit control to overcome capacity 
without lane change control and achieve the maximum possible fow under all feasible traffc sit-
uations. We also consider the case where the system disturbance is included and extend the VSL 
controller by adding the integral action in order to reject the disturbance while avoiding the ca-
pacity drop. 
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Integrated Traffc Flow Control in a Con-
nected Network 
Executive Summary 
Highway congestion is detrimental to traffc mobility, safety and the environment. Numbers of 
studies have been conducted to avoid or relieve highway congestion with different traffc fow 
control strategies such as Variable Speed Limit (VSL), Ramp Metering (RM) and Lane Change 
(LC) recommendation and their combinations. While consistent improvement on traffc safety 
is reported under existing traffc fow control strategies in macroscopic and microscopic simula-
tions, the results are rather controversial when it goes to the improvement on traffc mobility and 
the environmental impact, especially in microscopic simulations. Some researchers attribute the 
inconsistencies to the complexity of underlying reasons of the congestion and highly disordered 
and stochastic behavior at the bottleneck. Therefore, it is necessary to investigate the dynamical 
behavior of the open-loop traffc fow systems under all possible demand levels as well as initial 
densities in order to fnd out the reasons of the chaotic behavior at the bottleneck, and based on 
which fnd an integrated traffc fow controller which is able to provide consistent improvement in 
traffc mobility, safety and the environmental impact under different traffc scenarios. 
In this report, we discover that one of the major reasons of the disordered behavior is the forced 
lane changes at vicinity of the bottleneck. A lane change controller is proposed which provides 
lane change recommendations to upstream vehicles in order to avoid the capacity drop. A feed-
back linearization variable speed limit controller is designed based on the frst order cell trans-
mission traffc fow model in order to improve the fow rate at highway bottleneck together with 
the lane change controller. The combined lane change and variable speed limit controller can an-
alytically guarantee the global exponential convergence to the desired equilibrium point at which 
maximum possible fow rate is achieved. Then the combined LC and VSL controller is extended 
to coordinate with ramp metering controllers. The coordinated VSL, RM and LC controller is 
able to improve system performance, maintain the queue length on ramps and keep the fairness 
between mainline and on-ramp fows. Microscopic simulations show consistent improvement un-
der different traffc demand and scenarios. Furthermore, we modify the cell transmission model 
to include the effect of capacity drop and the decreasing discharging fow of the road section and 
rigorously investigate its stability properties under all possible traffc fow scenarios. The analysis 
is used to motivate the design of variable speed limit control to overcome capacity drop without 
lane change control and achieve the maximum possible fow under all feasible traffc situations. 
We also consider the case where the system disturbance is included and extend the VSL con-
troller by adding the integral action in order to reject the disturbance while avoiding the capacity 
drop. 
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1 Introduction 
Due to the rapidly increasing demand for transportation, congestion has become a signifcant 
problem all around the world. Congestion has negative impact on traffc mobility, safety and 
the environment. In the United States, the yearly delay time per auto commuter due to conges-
tion was 42 hours in 2014, which is increased by 13.5% compared to 37 hours in 2000. The fuel 
wasted in congestion is 19 gallons per commuter per year in 2014, which increased by 26.7% 
when compared to 15 gallons per commuter per year in 2000 [1]. Unstable traffc fow conditions 
on highway segments are known to increase the possibility of crash [2]. 
In highway traffc, bottlenecks often arise due to incidents, construction, merge or diverge points 
and other road conditions. When traffc demand is higher than the capacity of the bottleneck, 
congestion occurs. One possible way to solve highway congestion problem is to expand highway 
networks, which is usually constrained by long building period and limited capital investment. 
Hence, increasing the utility of existing road infrastructure with advanced traffc control strate-
gies is a more attractive solution. To prevent or relieve highway congestion, different Intelligent 
Transportation Systems (ITS) techniques, e.g. dynamic routing, driver information systems, vari-
able speed limit (VSL), and ramp metering (RM) etc., are widely studied and applied to improve 
the effciency of existing road networks [3–7]. 

Figure 1: Traffc Flow Control Signs on Highway 

(a) Variable Speed Limit (b) Ramp Metering (c) Lane Change Control 

There are various factors that may lead to highway congestion. For example, capacity drop at 
highway bottlenecks which deteriorates the maximum possible throughput of a highway, over-
loaded mainline traffc which creates shockwave propagating upstream and excessive on-ramp 
fow which disturbs the mainline traffc. Due to the variety and complexity of underlying reasons 
of highway congestion, it has never been an easy task to fnd a control strategy which is able to 
effciently regulate the traffc fow and improve traffc mobility, safety and the environment im-
pact when congestion occurs on highway. 
Numbers of previous studies have been conducted to relieve or postpone highway congestion 
with different control strategies. Variable speed limit (VSL), ramp metering (RM) and lane change 
(LC) control are among the most intensively studied and applied highway traffc fow control 
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strategies. Variable speed limit dynamically changes the speed limits along a highway segment 
thus regulates the traffc fow and improve traffc condition at the bottleneck. Ramp metering 
limits the number of vehicles entering the highway in unit time from on-ramps in order to main-
tain an appropriate demand on highway and attenuate the disturbance of ramp fows to the main-
line. Lane change control provides lane change instructions to vehicle drivers therefore help them 
avoid closed lanes and effciently move to the open lanes. 
Existing works on the development and evaluation of VSL, RM and LC control have reported 
consistent improvements in traffc safety in theories, macroscopic simulations, microscopic simu-
lations and feld tests [8–10], while the impact on traffc mobility and environment is rather con-
troversial. Although most of previous studies are able to show improvements of traffc mobility 
in macroscopic simulations with different traffc fow control strategies, when it comes to micro-
scopic simulations and feld tests, these improvements are not consistent under different traffc 
conditions or incident scenarios. In some cases, the travel time is improved and in others dete-
riorated due to the deployment of traffc fow controllers which raises questions as to the ability 
of VSL, RM and LC to improve traffc mobility [11–16]. Most researchers attribute the incon-
sistencies in travel time improvement to the highly disordered and stochastic traffc conditions 
at congested bottlenecks, which are diffcult to predicts and regulate [8, 13, 16, 17]. While these 
arguments have an element of truth, some questions we need to ask here is as follows: 

1. What is the behavior of the traffc fow in a road network? Under what condition the road 
network will get congested and what are the reasons of the disordered behavior of the traf-
fc fow at the bottleneck? 

2. Is it possible to reduce the level of disorder at the bottleneck, therefore the consistency be-
tween macroscopic and microscopic simulations can be achieved? 

3. Is it possible to fnd effcient VSL, RM and LC control strategies which are able to improve 
the traffc mobility at highway bottlenecks and robust to different incident scenarios? 

4. Given the complexity of underlying reasons of highway congestion, is it possible to ap-
ply multiple traffc fow control strategies simultaneously in an integrated and systematic 
manner, such that different control strategies can work along with each other coordinately 
without deteriorate the beneft introduced by other control strategies. 

5. Is it possible to fnd a traffc control strategy that can improve the traffc mobility under all 
possible traffc scenarios and capacity constraints as well as initial conditions? 

In this study, to answer the above questions, the problem of analysis of traffc fow systems and 
the design, analysis and evaluation of integrated VSL, RM and LC controller for highway traf-
fc is addressed. The goal of the integrated controller is to stabilize and homogenize the traffc 
fow upstream a highway bottleneck, therefore improve the traffc mobility, safety and the en-
vironmental impact. We also evaluate the robustness of the integrated controller with respect to 
different levels of traffc demand, model parameters and measurement noise in both macroscopic 
and microscopic simulations. Furthermore, the open-loop stability properties of the modifed cell 
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transmission traffc fow model (CTM) which takes the capacity drop phenomenon into consid-
eration under all possible traffc fow scenarios are investigated, which motivates the design of a 
VSL controller which is able to avoid the capacity drop, stabilize the system and maximize the 
fow rate at the bottleneck. The VSL controller is extended with integral action in order to reject 
system disturbance. 

2 Literature Review 
In the past several decades, numerous studies have been conducted to explore the effect of VSL, 
RM and LC control on traffc mobility, safety and the environmental impact. 
VSL control has been one of the widely studied highway traffc control technologies since the 
1990s [18]. Papageorgiou et al. studied the effect of VSL on the fundamental diagram in [19]. 
It is shown that VSL control decreases the slope of the fundamental diagram when the vehicle 
density is lower than the critical value and increases the critical density. The fow at the same 
density would be higher with VSL in over critical conditions. 
Muralidharan et al. proposed a MPC VSL controller based on the LN-CTM model that is able 
to recover the bottleneck from capacity drop and obtain an optimal trajectory in the absence of 
capacity drop [20]. In 2014, Frejo et al. proposed a hybrid MPC controller which combines VSL 
with ramp metering. The proposed method reduced the computation load of the receding horizon 
optimization by using genetic and exhaustive algorithms while achieving a good performance in 
simulation [21]. 
In [22], Khondaker and Kattan designed a MPC VSL controller based on a microscopic car fol-
lowing model with the assumption of a connected vehicle environment. The proposed method 
predicts traffc conditions on the microscopic level and optimizes a cost function which is the 
weighted sum of TTT and time to collision (TTC), therefore improves both traffc mobility and 
safety. The method was evaluated using a microscopic simulation model based on the commer-
cial software, VISSIM. Signifcant improvement on travel time is demonstrated. However, the 
authors assumed that all vehicle information is available in real time and the vehicle states can be 
accurately predicted, which is very diffcult, if at all possible. 
In 2013, Carlson et al. [23] proposed two local feedback VSL controllers. The local feedback 
controllers were compared to a nonlinear optimal controller via macroscopic simulations. Re-
sults showed that the simple feedback controllers can provide similar improvement with respect 
to the total time spent (TTS) as the optimal controller by using much lower computational ef-
fort. The method is extended to multiple bottlenecks in [24] and evaluated to be also effective in 
microscopic simulations in [25]. In [26], Jin and Jin proposed a proportional-integral (PI) VSL 
controller to maximize the bottleneck throughput with only one VSL sign by locally stabilizing 
the vehicle density at a critical value. Since the analysis is local there is no guarantee that a traf-
fc disturbance would not lead to a capacity drop and unstable situation. In addition it is not clear 
how the design for one section can be extended to multiple sections upstream the bottleneck. 
In [27], Hegyi et al. proposed the SPECIALIST VSL controller strategy based on shockwave the-
ory. The SPECIALIST method detects the shockwave upstream the bottleneck and uses VSL to 
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make the shockwave accumulate slower and dissipate faster thus dampen the shockwave and im-
prove traffc mobility. In [28], a local feedback VSL control strategy integrated with ramp meter-
ing is proposed based on the fundamental diagram. An extended version of this control strategy 
is evaluated in [29] with microscopic simulations. The method is shown to be able to improve 
freeway effciency as well as be robust with respect to modeling error and measurement noise. 
The effects of VSL on traffc safety and the environment is also assessed. In [30], Abdel-Aty et 
al. showed that well-confgured VSL strategies can decease the crash likelihood but large gaps 
of speed limit in time and space may increase it. No improvement in travel time is observed in 
this study. In [31], a genetic algorithm was used to choose the control parameters in order to min-
imize the rear-end collision risks near freeway recurrent bottlenecks. With the proposed control 
strategy, the VSL control reduced the rear-end crash potential by 69.84% for the high demand 
scenario and by 81.81% for the moderate demand scenario. [32] evaluated the environmental im-
pact of the VSL and LC control method proposed in [33] with a microscopic emission model 
CMEM and a macroscopic one MOVES. It is shown that the environmental benefts are evaluated 
to be qualitatively similar with both models while the microscopic CMEM is more sensitive to 
transient process. 
In [34], a MPC VSL strategy was proposed using a car-following model to reduce both total time 
spent (TTS) and total emissions. It is shown that a reduction of TTS alone may not reduce the 
total emissions. [22] showed that in case of 100% penetration rates of connected vehicles, op-
timizing for safety alone is enough to achieve simultaneous and optimum improvements in all 
measures. However, in case of lower penetration rate, a higher collision risk was observed when 
optimizing for only mobility or fuel consumption. 
The aim of RM is to adjust the on-ramp fow into the mainline in order to improve the overall 
traffc condition. RM has been widely used in United States and the Europe [35, 36]. ALINEA, 
one of the most popular RM strategies, is a heuristic local feedback control method with integral 
action [6]. 
In [37], ALINEA is expanded to MALINEA, which includes the mainline occupancy upstream 
the on-ramp in the feedback loop. MALINEA addresses two main disadvantages to ALINEA. 
The frst is that although ALINEA optimizes the occupancy downstream of the entrance ramp, 
congestion can still occur upstream of the ramp. The second is that the optimal detector location 
can be diffcult to determine. 
[38] proposed FL-ALINEA which includes feedback downstream fow rate instead of occupancy 
and ALINEA/Q algorithm which combines queue control with ALINEA. MALINEA addresses 
two main disadvantages to ALINEA. The frst is that although ALINEA optimizes the occupancy 
downstream of the entrance ramp, congestion can still occur upstream of the ramp. The second 
is that the optimal detector location can be diffcult to determine. Its formula is identical to the 
formula used for traditional occupancy-based ALINEA, except that it measures fow, and tries 
to reach a set point fow rather than a set point occupancy. However, when the occupancy is over 
the critical occupancy, the metering rate is set to the minimum rate, since the freeway is already 
over capacity. ALINEA/Q algorithm calculates two metering rates. The frst rate is calculated 
exactly the same as in the traditional ALINEA algorithm. The second rate that is calculated is the 
minimum rate needed to keep the ramp queue at or below the maximum allowable queue length. 
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The fnal calculated rate is the greater of either the ALINEA rate or the queue control rate. 
Some model-based RM algorithms are also developed. Coordinated ramp metering is based on a 
second order traffc fow model and an optimal control approach that decides the metering rates 
of multiple ramps in a coordinated manner [39]. Coordinated ramp metering is basically a vector-
ization of the ALINEA equation, which uses vectors of occupancy, and 2 control gain matrices to 
return a vector of metering rates. 
SWARM is a data-based ramp metering strategy which uses linear regression of measured data 
to predict the density [40]. Despite the intensive application of RM, it is recognized that ramp 
metering can only control the vehicle density immediately downstream the on-ramp therefore 
barely improves the overall traffc condition in practice, especially when the mainstream demand 
is high [41, 42]. The above limitations of RM motivates the investigation of combining ramp me-
tering with mainline traffc control strategies such as VSL. 
Previous efforts to study the effect of lane changes at bottlenecks and develop traffc fow control 
strategies with consideration of lane management include the following: 
In 1986, Rathi et al. [43] developed a microscopic simulation model to evaluate the effect of LC 
control in a freeway work zone at different driver compliance rate. In 1988, Mahmassani et al. 
[44] applied a macroscopic simulation model to evaluate lane closure strategy for planned work 
zone. The work in [43, 44] is focused on long-term lane closure strategies rather than temporary 
lane closures. 
In 1998, Schaefer et al. [45] assessed the effectiveness of overhead lane control signals. The sig-
nals are placed at 1/2 mile intervals ahead of the highway incident area and indicate lane closure 
with red “x” symbols. A microscopic simulation using SLAM was used to evaluate the perfor-
mance of the lane change signal on time delay. In 1999, Jha et al. [46] evaluated three different 
lane control signal settings for the tunnel of I-93 South. Yellow and red overhead signals were 
applied ahead of incident location and evaluated with microscopic simulator MITSIM. The study 
showed that under incident condition, TTT is sensitive to upstream road geometry and driver 
compliance rate. Carelessly confgured LC signal settings may result in increase of TTT. 
In [47], Jin stated that systematic lane changes can seriously deteriorate traffc safety and eff-
ciency during lane drop, merge, and other types of bottleneck. The author introduced an entropy 
condition for the multi-commodity LWR model and solve the Riemann problem inside a homo-
geneous lane-changing area. In [48], Laval and Daganzo also confrmed that lane changes at the 
bottleneck reduce the fow rate and result in capacity drop at the bottleneck. 
In recently years, researchers start to examine the combination and integration of different traf-
fc fow control schemes. In [49], Baskar et al. proposed a MPC approach to fnd optimal speed 
limits and lane allocations for platoons. The method is simulated on a 2-lane highway segment 
and reported to improve travel time by 5% - 10%. It is assumed that all vehicles are controlled by 
road-side controllers. In 2014, Roncoli et al. [50] proposed a MPC-based traffc control strategy 
for multi-lane motorways, which integrates VSL, ramp metering and lane allocation. The authors 
adopted the frst order fow model and treated each lane as different cells. MPC is designed based 
on a cost function which penalizes TTS, queue length on the ramps and amplitude of oscillations. 
Simulation results show that VSL performs much better when combined with ramp metering and 
lane allocation. 
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The coordination of RM and VSL involves consideration of network mobility, on-ramp queues 
and fairness between the mainline and the ramps. The objective is to keep a balanced delay time 
between vehicles on the mainline and the ramps and avoid long queues on the ramps from spilling 
back to the urban road network. Past efforts to integrate ramp metering with variable speed limit 
control include the following: [51, 52] chose the optimal VSL and RM commands based on a sec-
ond order model in an open-loop manner. [53] developed a combined VSL and RM controller by 
using model predictive control (MPC) based on the METANET model. [54] combined VSL and 
coordinated RM using an optimal control approach. [41] used a MPC approach to generate the 
VSL commands which coordinate with pre-existing RM controllers. [7] designed a MPC-based 
RM controller with a linearized frst-order model which is equipped with a heuristic VSL con-
troller. 
The design of the coordinated VSL, RM and LC controller is based on the frst-order cell trans-
mission traffc fow model, which during the recent years was used to develop variable speed 
limit (VSL) control strategies. In [55], Hadiuzzaman et al. proposed a model predictive control 
(MPC)-based VSL control strategy to relieve congestion caused by active bottleneck which in-
troduces capacity drop. No signifcant improvement was shown in bottleneck throughput. The 
reason given by the authors of [55] for the lack of improvements by the proposed VSL was that 
the model and data used were not accurate enough. In [20], an MPC-based coordinated VSL and 
ramp metering (RM) controller is proposed based on the link-node CTM. The VSL and RM con-
trol commands are computed by relaxing the receding-horizon optimization problem into linear 
programming. In [56], the CTM model is expressed in a piecewise affne switching-mode form, 
based on which an MPC-based VSL controller is developed to attenuate shockwave. 
In [57], Gomes et al. performed a thorough analysis of the equilibrium points and their stability 
properties of the CTM model. However, the authors did not take the capacity drop phenomenon 
into consideration. In addition, the convergence rate at which the system states converge to the 
equilibrium points is not specifed. Reference [58] developed suffcient conditions for the sta-
bility of the equilibrium points of CTM in terms of connectivity of a graph associated with the 
traffc network. The results of [57] and [58] are established based on the monotonicity of CTM. 
However, if the CTM is modifed to account for capacity drop and the fact that the discharging 
fow rate of a congested road section decreases with density [5, 26, 59, 60], then the CTM is no 
longer monotone. A fnite horizon optimal routing and fow control strategy is proposed in [58]. 
The stability and convergence of the closed-loop system to a desired equilibrium however has 
not been established. In [61], the authors analyzed the equilibrium points and their stability prop-
erties under feasible and infeasible demand, however the capacity drop phenomenon and traffc 
fow control is not considered. In [62], suffcient conditions for global asymptotic stability and 
global exponential stability of the equilibrium points of discrete-time CTM model are developed 
using vector Lyapunov functions. In [63], the authors proposed a feedback control law that guar-
antees the global exponential stability of the desired equilibrium point of the CTM model. The 
control input in this case is the fow rate itself. It is not clear, however, how to implement the fow 
controller with VSL control. 
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3 Combined Variable Speed Limit and Lane Change Control 
As introduced in section 1, inconsistent performance of variable speed limit and ramp metering 
controllers have been reported in existing studies. Some researchers attribute the inconsistencies 
to the highly disordered and stochastic behavior at highway bottlenecks. One of the main factors 
of the disordered behavior at highway bottlenecks is the capacity drop phenomenon, where the 
maximum achievable traffc fow rate decreases when queues form [64, 65]. Under certain speed 
limit, when the density at the vicinity of the bottleneck increases to be higher than some critical 
value, a queue forms upstream of the bottleneck which decreases the capacity of the bottleneck. 
Capacity drop makes the dynamics of the traffc fow at bottleneck highly unstable, which is dif-
fcult for VSL control to maintain a high fow rate. [23] claims that one of the main factors that 
introduce capacity drop is the ineffcient acceleration of vehicles at the bottleneck, thus by pro-
viding an acceleration section with reasonable length and regulating the density with VSL, capac-
ity drop can be avoided. Such an approach however has the following drawbacks. First it is dif-
fcult to establish in cases of incidents and second enforcing an acceleration section may require 
reducing the fow upstream considerably. The method in [20] is developed under the assump-
tion that the bottleneck never returns to capacity drop mode from free fow mode, i.e., once the 
VSL controller recovers the bottleneck from capacity drop, the capacity drop never occurs again. 
While there is no reason to doubt the reported results, our studies and observations of traffc show 
clearly that forced lane changes in close proximity to the incident or bottleneck is the major cause 
of capacity drop and once it takes place VSL control will have limited or no effect in improving 
travel time. Most likely in the reported results which show signifcant benefts the scenarios did 
not involve signifcant forced lane changes or as in the case of [23] it was prevented by creating 
an acceleration area before the bottleneck. It should be intuitively clear that once the forced lane 
changes bring down the speed of vehicles in neighboring lanes there is no way for an VSL con-
trol technique to eliminate the capacity drop. 
In this section, we frst proposed a lane change (LC) controller which can avoid or relieve the 
capacity drop at the bottleneck. Two types of VSL controller are designed to combine with the 
LC controller. The frst one is an heuristic local feedback controller with integral action. The 
second one is a feedback linearization controller which is designed based on the frst order cell 
transmission model. Together with a lane change controller, the feedback linearization VSL con-
troller guarantees stability of the traffc fow and convergence of traffc densities to an equilibrium 
density with an exponential rate of convergence. In contrast to previous studies which relied on 
linearized models, our approach is based on feedback linearization and the results obtained are 
global. Therefore from the macroscopic point of view the proposed VSL and lane change con-
trol guarantees no capacity drop and maximum fow at the bottleneck. The lane change controller 
is based on a space model as in this case the control variable is the location of the lane change 
control commands. This location is found to depend on demand and number of lanes closed. The 
proposed combined lane change and VSL control design is evaluated using microscopic Monte 
Carlo simulations under different scenarios. The microscopic results generated are very consis-
tent with the macroscopic ones and demonstrate consistent improvements to traffc mobility and 
impact on the environment for all the simulated scenarios. 
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Figure 2: Highway Bottleneck 

3.1. System Modeling 
3.1.1. Model of highway bottleneck 

Consider a highway segment without on-ramps and off-ramps. A bottleneck is the point with 
lowest fow capacity. Due to the bottleneck a queue of vehicles forms as traffc demand increases. 
The fow rate of the bottleneck determines the throughput of the entire highway segment. There-
fore, the modeling of the bottleneck traffc fow is crucial to the design of an effcient traffc con-
trol strategy. A bottleneck can be introduced by lane drop, incident lane blockage, merge point or 
other road conditions. 
Fig. 2 shows a highway segment with 5 lanes. A bottleneck is introduced by an incident which 
blocks one lane. The length of the bottleneck is denoted by Lb. We assume that the capacity of 
the highway segment before the incident is C. Then the ideal capacity of the bottleneck after the 
incident should be Cb = 

5
4 C. As we can see in Fig. 2, if Lb is small, the effect of the density 

within Lb is negligible and will not affect the bottleneck fow. The fow rate qb at the bottleneck is 
determined by ρd, the vehicle density of the immediate upstream section of the bottleneck, which 
is referred to as the discharging section in Fig. 2. We adopt the assumption of triangular funda-
mental diagram, that is, when the value of ρd is low, qb = vfρd, where vf is the free fow speed. 
However, when ρd is higher than some critical value ρd,c, i.e. the demand of the bottleneck is 
higher than its capacity Cb, a queue forms at the discharging section which propagates upstream. 
Forced lane changes performed by the vehicles in the queue reduce the speed of fow in the open 
lanes. Therefore, the capacity would drop to Cb 

0 = (1 − �)Cb once the queue forms [20, 26, 60]. 
The relationship between ρd and qb is shown as solid line in Fig. 3 and is described by the equa-
tion � 

qb = 
vfρd, 
(1 − �)Cb, 

ρd ≤ ρd,c 

ρd > ρd,c 
(1) 

where Cb = vfρd,c, � ∈ (0, 1). 
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Figure 3: Fundamental Diagram 

Figure 4: Confguration of VSL Control System 

3.2. VSL confguration and cell transmission model 
As shown in Fig. 4, the upstream highway segment of bottleneck is divided into N sections. The 
lengths of different sections are expected to be similar but not necessarily identical. VSL signs 
are installed at the beginning of section 1 through section N − 1. The speed limit in section N , 
which functions as the discharging section in Fig. 2, is constant and equals vf, the maximum 
possible speed given by the fundamental diagram, which would let vehicles in open lanes get 
through the bottleneck as fast as possible, under the assumption of triangular fundamental dia-
gram. 
For i = 1, 2, . . . , N , we denote the length, vehicle density and the infow rate of section i with 
Li, ρi and qi respectively. For i = 1, . . . , N − 1, we denote the variable speed limit in section i 
with vi. The variables ρi, qi, vi are all functions of time t. By conservation law, the dynamics of 
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densities ρi are described by the differential equations 

ρ̇i = (qi − qi+1) /Li, i = 1, 2, . . . , N − 1 
(2)

ρ̇N = (qN − qb) /LN 

Under the assumption of triangular fundamental diagram, the fow rate qi can be found as fol-
lows: 

= min{d, C1, w1(ρj,1 − ρ1)}q1 (3) 
qi = min{vi−1ρi−1, Ci, wi(ρj,i − ρi)}, i = 2, 3, . . . , N 

where d is the demand fow of this highway segment assumed to be constant relative to the other 
variables. ρj,i is the jam density of section i, at which qi would be 0. wi is the backward propa-
gating wave speed in section i, Ci the capacity, i.e. the maximum possible fow rate in section 
i, given by Ci = viwiρj,i/(vi + wi). We should note that for i = N , CN and ρN,c are not the 
same as Cb and ρd,c. When ρN reaches ρd,c, qb decreases but section N still has enough space for 
vehicles in section N − 1 to fow in. Therefore, ρN,c > ρd,c, CN > Cb. The goal of the VSL 
controller is to stabilize the system described in (1) - (3) and maximize the fow rate qb. Accord-
ing to (1), maximum qb is obtained at ρN = ρb, which is a discontinuity point of the fundamental 
diagram. From the macroscopic point of view, it is possible to fnd a VSL controller to maintain 
that ρN = ρd,c [26]. However, microscopic simulations in [33] demonstrate that when congestion 
occurs at the bottleneck, the queue accumulates so fast that VSL control can hardly reduce the 
density back to ρd,c, therefore it fails to maintain maximum fow. The reason is explained in the 
following subsection. 

3.3. Effects of Lane Change Control 
In order to study the effect of lane change control, we build a hypothetical highway segment as 
shown in Fig. 2, which is straight, 8 km long and with 5 lanes, with the microscopic traffc fow 
simulated using the commercial software VISSIM [66]. The VISSIM model is calibrated with 
typical freeway road geometry and driving behavior. The bottleneck is formed by an incident 
which blocks the middle lane. We investigate the relationship between the fow of the bottleneck 
qb and the density ρd in the 500 m long discharging section immediately upstream the bottleneck 
under different levels of traffc demand. Fig. 5 shows the relationship between qb and ρd without 
any VSL control. The small blue circles describe the fundamental diagram in the case of lane 
change control. The red asterisks show the corresponding fundamental diagram in the absence of 
lane change control. The design procedure of LC controller is described in Section 3.4. 
Observing Fig. 5, we can see that when LC control is applied, the capacity of the bottleneck is 
around 7600 veh/h, which is achieved at ρd ≈ 135 veh/mi. However, when there is no LC con-
trol, qb stops increasing even before ρd reaches 135 veh/mi (around ρd = 100 veh/mi). The highest 
fow rate is around 6300 veh/h. The reason why the fow rate in the no control case fails to reach 
higher level is demonstrated in Fig. 2. When vehicles approach the incident spot without being 
aware that their lane is blocked they are forced to slow down considerably and change lanes. 
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Figure 5: Fundamental Diagram with and without LC Control 

These forced lane changes at low speed cause the traffc to slow down in the open lanes before 
and after the incident leading to lower volume, while the average density of the discharging sec-
tion, ρd, is still low. Other parts of the fundamental diagram in the no control case ft equation (1) 
very well. Compared to the fundamental diagram with LC control, we can calibrate the param-
eters as, ρd,c = 135 veh/mi, Cb = 7600 veh/h and � = 0.16. The above stated behavior of the 
bottleneck makes it diffcult for VSL control to increase qb at the bottleneck, as VSL is only able 
to regulate the average density ρd in the discharging section, but cannot eliminate the forced lane 
changes at the vicinity of the bottleneck. 
On the other hand, with the LC control, we can see that 

1. no obvious capacity drop is observed at ρd = ρd,c; 

2. qb at ρd > ρd,c is approximately linear with a negative slope wb, which represents the wave 
propagation rate; 

3. most data points scatter close to ρd = ρd,c. The points of high density are rare. 

These observations show that the LC controller is able to reduce the number of vehicle stops in 
the queue at bottleneck and decrease the vehicle density, which makes the system continuous and 
easier for the VSL controller to stabilize. As a consequence of the LC control action, in the cell 
transmission model the relationship between ρN and qb can be modeled as: � 

vfρN , ρN ≤ ρd,cqb = (4)
wb(ρj,d − ρN ), ρN > ρd,c 

where ρj,d = vfρd,c/wb + ρd,c. 
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Although the lane change control is able to recover the triangular shape of the fundamental dia-
gram, when the demand is higher than the capacity Cb, a congestion will still occur at the bottle-
neck. Now the goal is to design a VSL controller to stabilize system (2) - (4) by homogenizing 
the densities in all sections and have them converge to an equilibrium which corresponds to the 
maximum possible fow as shown in the following section. 

3.4. Design of the Lane Change Controller 
The design of LC controller includes the pattern of the LC recommendation messages and the 
length of LC controlled segment. As we will explain below the control variable for LC control 
is the location of the LC recommendation which depends on a nonlinear spatial model that we 
developed. 

3.4.1. Lane Change Recommendation Messages 

Suppose a general highway segment has m lanes, with Lane 1 (Lane m) being the right (left) 
most lane in the direction of fow. We select the LC recommendation message Ri for lane i, i = 
1, 2, . . . ,m using the following rules: 

1. For 1 ≤ i ≤ m, if lane i is open, Ri = “Straight Ahead”; 

2. For i = 1(i = m), if lane i is closed, Ri = “Change to Left (Right)”; 

3. For 1 < i < m, if lane i is closed, lane i−1 and lane i+1 are both open, Ri = “Change to Either Side”; 

4. For 1 < i < m, if lane i is closed, lane i − 1 (lane i + 1) is closed but lane i + 1 (lane i − 1) 
is open, Ri = “Change to Left (Right)”; 

5. For 1 < i < m, if lane i is closed, lane i − 1 and lane i + 1 are both closed, then we 
check Ri−1 and Ri+1. If Ri−1 = Ri+1, then Ri = Ri−1 = Ri+1, else if Ri−1 =6 Ri+1, 
Ri = “Change to Either Side”. 

Rules (1)-(5) determine the LC recommendation messages depending on the incident location. 
The 5 rules covers all incident cases and are also mutually disjoint. Therefore they are well-
defned and self-consistent. 

3.4.2. Length of LC Control Segment 

The control variables in the LC control case are the length of the LC control segment and the lo-
cation of the LC recommendation. Within that segment, a LC recommendation is given at each 
section within the segment. The length of the LC controlled segment need to be long enough in 
order to provide adequate space and time for upstream vehicles to change lanes. Intuitively, if 
more lanes are closed at the bottleneck, a longer LC control distance is required. In addition, the 
capacity of the bottleneck and demand will also affect the LC control distance. On the other hand 
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Figure 6: ξ under different traffc demands 

if the length of LC control segment is too long it may cause other problems as the blocked lane 
will appear empty to drivers inviting more lane changes in and out of the blocked lane which is 
going to deteriorate performance in terms of unnecessary maneuvers. We used extensive micro-
scopic simulation studies to develop the following empirical model that allows us to generate the 
control variable dLC which is the length of the LC controlled section given by the following equa-
tion: 

dLC = ξ · n, (5) 

where n is the number of lanes closed at the bottleneck, ξ a design parameter related to the capac-
ity of bottleneck and the traffc demand which in our case is found to have the relationship shown 
in Figure 6. For a specifc highway segment, the minimum value of ξ required under different 
traffc demands can be found by simulation. Since LC signs are only deployed at the beginning ofPNsections, we choose the number of LC controlled sections M , as M = argmin ,i=N−M+1 li − dLC 

where li represents the length of section i. More details can be found in [33]. Here we assume 
that the LC controlled segment has no on-ramp or off-ramps. The model (5) is empirical and 
more spacial than temporal despite the dependence of ξ on demand which may be time varying. 
The purpose of the LC control is to ask drivers to start changing lanes before the incident. It is an 
off and on controller i.e change lanes or not required to change lanes. It is different than the VSL 
controller which is purely dynamic. 

3.5. Feedback Linearization Variable Speed Limit Controller 
In this section, we designed a feedback linearization VSL controller based on the cell transmis-
sion model (2)-(4). 

3.5.1. Desired Equilibrium Point 

The fundamental diagram under LC control is shown in Fig. 7. We consider the demand d > Cb, 
which may introduce congestion at the bottleneck. From the nonlinear system (2) - (4), we calcu-
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Figure 7: Desired Equilibrium Point 

late the equilibrium point by setting the derivatives in (2)-(4) to be zero. Let ρe = [ρe 
1, ρ

e 
2, . . . , ρ

e 
N ]

T 

e e e e ]Tand v = [v1, v2, . . . , vN−1 denote the vector of equilibrium density and the corresponding 
equilibrium speed limits in each section respectively. The desired equilibrium point should be 
the one at which maximum possible fow rate Cb is achieved and the upstream traffc fow is ho-
mogenized. According to the triangular fundamental diagram (4), since the speed limit is con-
stant and equals vf in section N , therefore the optimum equilibrium density for maximum fow is 
ρe 
N = Cb/vf. For section 2 through N − 1, we set 

ρe = · · · = ρe = Cb/vf, v e = · · · = v e = vf. (6)2 N 2 N−1 

hence at the desired equilibrium point, the densities and speed limits in section 2 through N 
would be the same and the upstream traffc fow of the bottleneck is homogenized. 
Since d > Cb, we need to lower the speed limit in section 1 in order to suppress the traffc fow 
entering the controlled segment. According to (3), the equilibrium point satisfes: 

v1 
eρe 

1 = w1(ρj,1 − ρe 
1) = Cb. 

which gives 
ρe 
1 = ρj,1 − Cb/w1, v1 

e = Cbw1/(ρj,1w1 − Cb) (7) 

The equilibrium point described in (6) - (7) is the desired equilibrium point which maximizes the 
fow at the bottleneck and homogenizes the upstream traffc. In addition, it minimizes the aver-
age travel time according to the fundamental diagram. Without loss of generality, we assume the 
length of all sections are the same and equal to unit length. The system (2) - (4) can be expressed 
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as follows: 
ρ̇1 = w1(ρj,1 − ρ1) − v1ρ1 

ρ̇i = vi−1ρi−1 − viρi, for i = 2, . . . , N − 1� (8) 
vN−1ρN−1 − vfρN , ρN ≤ ρd,cρ̇N = 
vN−1ρN−1 − wb(ρj,b − ρN ), ρN > ρd,c 

In (8), the only switching point is ρN = ρd,c. This is consistent with real-world, since the capaci-
ties of upstream sections are much larger than Cb. As long as system (8) converges to the desired 
equilibrium point, the steady-state bottleneck fow is maximized and upstream traffc is homoge-
nized. 

3.5.2. Feedback Linearization VSL Controller 

For the design and analysis of the VSL controller we defne the deviations of the state of (8) from 
the desired equilibrium (6) - (7) by defning the error system as: ei = ρi − ρi 

e for i = 1, 2, , . . . , N 
and ui = vi − vi 

e for i = 1, 2, . . . , N − 1. Substitute into (8), we have 

ė1 = −w1e1 − v1 
e e1 − u1ρ1 

ėi = vi 
e 
−1ei−1 + ui−1ρi−1 − vi 

e ei − uiρi 

for i = 2, . . . , N − 1 (9)� 
vN 

e 
−1eN−1 + uN−1ρN−1 − vfeN , eN ≤ 0 

ėN = evN −1eN−1 + uN−1ρN−1 + wbeN , eN > 0 

The transformation of (8) to (9) shifts the non zero equilibrium state of (8) to the zero equilibrium 
point of (9). The nonlinear terms in (9) are uiρi for i = 1, 2, ..., N − 1. Now the problem is to 
select u1 through uN−1 in order to stabilize system (9) and force all the errors or deviations from 
the equilibrium state to converge to zero. 
We introduce the following feedback controller which ‘kills’ all nonlinearities and forces the 
closed loop system to be linear, an approach known as feedback linearization [67]. We choose 

ui = (−vi e ei − λiei+1)/ρi, for i = 1, . . . , N − 2 ⎧ e−λN−1eN − vN−1eN−1 + vfeN⎪ ,eN ≤ 0⎨ (10)ρN−1 uN−1 = −λN−1eN − vN 
e 
−1eN−1 − wbeN⎪⎩ ,eN > 0 

ρN−1 

where λi > 0 for i = 1, . . . , N − 1 are design parameters. This is a switching controller, whose 
switching logic is based on the value of eN . Since we avoid the capacity drop by applying the 
LC control, the controller is continuous at the switching point. With the feedback linearization 
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controller (10), the closed loop system becomes: 

ė1 = −w1e1 + λ1e2 

= −λi−1ei + λiei+1, for i = 2 . . . , N − 2 

−λN −2eN−1 − λN−1eN + vfeN , eN ≤ 0 (11)
�ėi 

ėN−1 = −λN −2eN−1 − λN−1eN − wbeN , eN > 0 

ėN = −λN−1eN 

The stability properties of the closed loop system (11) are described by the following Theorem. 

Theorem 3.1. The equilibrium point ei = 0, i = 1, 2, . . . , N of the system (11) is isolated and 
exponentially stable. The rate of exponential convergence depends on the control design parame-
ters λi, i = 1, 2, . . . , N − 1. 

Proof For i = 1, 2, . . . , N , setting ėi = 0 in (11), the only equilibrium point is ei = 0. From (11), 
we can see that the state eN is decoupled from other states, i.e. ėN = −λN−1eN ., whose solution 
is 

eN (t) = eN (0) exp(−λN −1t), ∀t > 0. (12) 

Since exp(−λN−1t) > 0 for all t, eN (t) and eN (0) have the same sign for all t > 0, i.e. if 
eN (0) ≤ 0, then eN (t) ≤ 0, if eN (0) > 0, then eN (t) > 0 for all t > 0. In other words eN 

is either non increasing or non decreasing which means that the state eN will not switch between 
eN ≤ 0 and eN > 0. Therefore, the dynamics of state eN−1 can be written as � 

−λN−2eN−1 − λN−1eN + vfeN , eN (0) ≤ 0 
ėN−1 = −λN−2eN−1 − λN−1eN − wbeN , eN (0) > 0 

Let us defne e = [e1, e2, . . . , eN ]
T , then the system (11) can be written in the compact form � 

A1e, eN (0) ≤ 0 
ė = (13)

A2e, eN (0) > 0 

where ⎤⎡ 
−w1 λ1 

−λ1 λ2 
. . 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 
Ai = , i = 1, 2. .. . 

−λN−2 −λN−1 + βi 

−λN −1 

and β1 = −wb, β2 = vf. A1 and A2 are both upper triangular matrices with all diagonal entries 
being negative real numbers, i.e. A1, A2 are both Hurwitz. Hence, system (13) is exponentially 
stable. Therefore (11) is also exponentially stable. In addition, for a given sign of eN (0) there is 
no switching taking place in (13). 
The rate of convergence to the equilibrium depends on the design parameters λi, i = 1, 2, ....N − 
1 which can be tuned to achieve a desirable convergence rate. It would also depend on the sign 
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of the initial condition eN (0) as the dynamics that drive the error system depend on whether the 
initial condition eN (0) is negative or positive. Q.E.D. 
The feedback linearization controller (10) is continuous in time. To apply it on real highway, we 
discretize the controller and apply the following constraints. 

1. Discretization in time. We discretized the continuous time VSL control commands using 
the sampling period Tc so that the VSL command is kept constant to its value at t = kTc till 
t = (k + 1)Tc where k = 0, 1, 2, .... 

2. Finite command space. We use a quantization of 5 mi/h to truncate the generated VLS 
commands which is easy to follow. 

3. Saturation of Speed Limit Variations. It is dangerous to decrease the speed limit too fast 
in both time and space. The decrease should be within some threshold Cv > 0 between 
successive control periods and highway sections. We don’t bound the speed limit variation 
if the speed limit increases. In addition the VSL commands never exceed the legal speed 
limit. 

Using the above constraints we modify the VSL control commands as follows: 
Let ui(k) denotes ui computed by equation (10) at t = kTc. We have, 

v̄ i(k) = [vi 
e + ui(k)]5 (14) 

ṽi(k) = max{v̄ i(k), vi(k − 1) − Cv, vi−1(k) − Cv} (15)⎧ ⎨ vmax, if ṽi(k) > vmax 

vi(k) = ⎩ 
vmin, 
ṽi(k), 

if ṽi(k) < vmin 

otherwise 
(16) 

for i = 1, 2, . . . , N − 1, k = 0, 1, 2, . . .. 
In (14), [·]5 is the operator which rounds a real number to its closest whole 5 number. Equation 
(15) describes the saturation limits on the amount of decrease of VSL commands between suc-
cessive control steps and highway sections. In (16), vmax and vmin are the upper and lower bounds 
of VSL commands respectively. 
The above modifcations will infuence the ideal performance of the VSL controller described by 
Theorem 1. Such modifcations are necessary in every control application [17,68,69] and the way 
to deal with possible deterioration from the ideal performance is to use the design parameters 
λ1, λ2, . . . , λN−1 to tune the system using intuition and practical considerations. The selection of 
the feedback gains λ1, λ2, . . . , λN−1 has to consider the trade off between stability and robustness 
with respect to modeling errors. 
We should note that the design and analysis of the feedback linearization VSL controller are 
based on model (8), which is a simplifed version of model (2)-(3) that assumes that section 1 
is congested and section 2 through N − 1 is free fow according to the location of the equilibrium 
(6). This assumption is valid under our control scheme. That is when the speed limit in section 
decreases, the outfow of section 1 will be suppressed, which makes section 1 congested and all 
downstream sections free fow. 
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3.5.3. Robustness with respect to varying demands 

In the analysis above, we assume that the demand d is a constant and d > Cb. As explained be-
low, the proposed VSL controller is robust with respect to different demands. 
If d < Cb, vehicles in the controlled segment would discharge and the densities in each section 
would be lower than the desired density. The VSLs in each section would increase, but saturated 
at vf. This situation is easy as due to the low demand congestion can be avoided or managed very 
well. 
When d > Cb and keeps increasing, according to Theorem 3.1, the controller lowers the speed 
limit in section 1 and limits the number of vehicles that enter the downstream network. There-
fore, a queue would be created whose size will be increasing upstream the fow. It appears, at frst 
glance, as if we are moving congestion from the sections under VSL and LC control to upstream 
sections. The important question we need to answer is how many vehicles there are in this queue 
and how fast it grows with and without VSL and LC control in the sections under consideration. 
In order to analyze the queue size upstream of section 1, we modify the system (2) - (4) by in-
troducing a new state Q, which represents the number of vehicles in the queue upstream section 
1. We assume that Q = 0 at steady state fow before the incident. Using the fow conservation 
equation, we have 

Q̇ = d − q1 (17) 

where d is the traffc demand. The infow rate of section 1, q1 then becomes ( 
min{d, C1, w1(ρj,1 − ρ1)}, Q ≤ 0 

q1 = (18)
min{C1, w1(ρj,1 − ρ1)}, Q > 0 

Equation (18) assumes that as long as the queue upstream section 1 is not fully discharged, the 
infow rate of section 1 will be as high as the maximum fow rate that section 1 can receive un-
der current ρ1. Note that the introduction of Q does not make any difference to system (2) - (4) 
before and during the incident. It only tracks the growth and discharge of the queue upstream 
section 1. Therefore the stability of the closed-loop system (11) is not affected. 
Hence, with the combined VSL and LC controller, the queue size is measured with Q. In the no 
control case, a queue forms at section N , whose size is denoted by Q̂. The following Lemma 
holds. 

Lemma 3.1. If the demand d > Cb, Q̂ grows faster than Q at steady state. In particular, 

Q̇ − Q̂˙ = −�Cb < 0 (19) 

ˆProof Similar to Equation (17), we can estimate Q̂ with the following equation Q˙ = d − q̂b, 
ˆwhere Q˙ is the growth rate of Q̂, q̂b is the outfow rate of section N without control. Since d > 

Cb, q1 converges according to Theorem 3.1 to the desired fow rate Cb exponentially with the 
combined VSL and LC controller. q̂b would decrease to q̂b = (1−�)Cb due to capacity drop. Sub-
stituting the steady state values of q1 and q̂b in the above equations we obtain (19). i.e. at steady 
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Figure 8: Steady State qb under Different Demands — With Control, - - -Without Control 

state, the growth rate of Q is less than that of Q̂. Q.E.D. 
From the analysis above, it is clear that if the demand d increases from below the bottleneck ca-
pacity Cb to greater than Cb and keeps increasing, the combined VSL and LC controller is able 
to protect the bottleneck from getting congested by suppressing the speed limit in section 1 there-
fore ρN can be stabilized at the desired value. On the other hand, in the no control case, the bot-
tleneck is directly exposed to the excessive demand, therefore ρN increases and leads to capacity 
drop. Fig. 8 plots the steady state bottleneck fow qb with respect to demand d. When d < Cb, the 
bottleneck would not be congested. When d > Cb, the bottleneck fow would be stabilized at the 
maximum value Cb by the combined controller in the controlled case. In the no control case, the 
fow rate would decrease to (1 − �)Cb due to capacity drop. 
Therefore, the combined VSL and LC controller is robust with respect to different levels of traf-
fc demand. The queue of vehicles grows slower in the controlled case than in the case with no 
control. 

3.6. Numerical Results 
3.6.1. Simulation Network 

We evaluate the combined VSL & LC control method using a microscopic and macroscopic 
model of the traffc fow on a 10 mile (16 km)-long southbound segment of I-710 freeway in Cal-
ifornia, United States (between I-105 junction and Long Beach Port), which has a static speed 
limit of 65 mi/h (105 km/h). We build this freeway network in VISSIM and calibrate the micro-
scopic model using historical data provided by [70]. The car following and lane change behavior 
of the VISSIM model is calibrated and validated using real measurements under static speed limit 
of 65 mi/h. 
The studied highway segment has 3-5 lanes at different locations. As shown in Fig. 9, we assume 
the bottleneck is introduced by an incident which blocked one lane. The upstream segment of the 
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Figure 9: Simulation Network 

certain lane. 

bottleneck is divided to 10 500m-600m sections. The bars the highway in Fig. 9 are whereacross 
VSL signs and LC signs deployed. In VISSIM, incidents simulated by placing stopped bus inare 

3.6.2. Evaluation of the Feedback Linearization VSL Controller 

In this section, design and evaluate combined VSL and LC controller for the simulation of we a 

tency with respect to performance improvements. 

32 

a real world highway segment. We use both macroscopic and microscopic traffc fow models 
and carry out Monte Carlo simulations for different incident scenarios in order to evaluate consis-

We use the same network in Fig. 9 to evaluate the performance of the feedback linearization VSL 
controller. To demonstrate the performance, robustness and consistency of the proposed con-
troller under different incident conditions, we consider 3 different scenarios with different inci-

1 

dent durations. We simulate each scenario under different demand fows. In each scenario, the 
incident occurs 5 minutes after simulation begins and lasts for 30 min in scenario 1, which simu-
lates the case of an incident of moderate duration which may be due to an accident; for 10 min in 
scenario 2 which simulates the case of a short incident due to a vehicle breakdown or minor ac-
cident. The incident is not removed after occurrence in scenario 3, which simulates a long time 
lane closure or a construction site or a physical bottleneck. We evaluate the combined VSL and 
LC control performance for each scenario with constant demand fows of 6000 veh/h and 6500 
veh/h which is higher than the capacity of the bottleneck. 5% of the demand are trucks. 
We use a macroscopic model to evaluate the performance of the proposed VSL controller. Since 
the macroscopic model used does not take into account lane changes and their effect close to the 
incident, we apply the LC controller to the corresponding microscopic model and use the micro-
scopic model data to validate the macroscopic cell transmission model. The desired equilibrium 
point of the I-710 highway segment is calculated to be 

ρe = 174.6 veh/mi, ρe = ρe = · · · = ρe 
10 = 90 veh/mi 

e = 33.5 mi/h, ve e e= · · = 65 mi/hv = v · = v1 2 3 9 

The LC recommendation sign is deployed at the beginning of section 9 and section 10 in Fig. 9, 
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Figure 10: Controller Performance without Constraints 

(a) Vehicle Density (b) VSL Command 

and recommends vehicles to change lanes by moving to the open lanes on either side. For the 
VSL controller, the following parameters are used: Cv = 10 mi/h, vmax = 65 mi/h, vmin = 10 
mi/h, Tc = 30 s. We choose λ1 = λ2 = · · · = λ9 = 20. We should note that as mentioned in 
Section 3.6.1, the capacity of the bottleneck with incident is 4500 veh/h. However, in the macro-
scopic model, we are assuming a strict triangular fundamental diagram and the capacity Cb is 
calibrated to be vf × ρe = 5850 veh/h. The reasons for this difference are explained in the follow-10 

ing section. Since the logic of our VSL controller is to stabilize the density at the critical value, 
the accurate value of equilibrium density is more important than the value of fow rate. The den-
sities and variable speed limits for the case of scenario 1 with demand d = 6500 veh/h are plotted 
in Fig. 10. For clarity of presentation, we only plot the densities in section 1, 9 and 10 and VSL 
commands in section 1 and 9. 
Fig. 10 demonstrates what is predicted by theory. That is the density in section 1 converges to 
the desired density of 174.6 veh/mi and the densities in sections 9, 10 to the desired density of 
90 veh/mi till the incident is removed at t = 35 min, in which case the densities converge to 105 
veh/h, which is higher than the pre-incident value. This is because the queue formed at section 1 
during the incident needs to discharge, therefore the temporary demand of the bottleneck after the 
incident is higher than the demand of the overall network. 
We then apply the constraints (14) - (16) to the VSL controller. The densities and VSL com-
mands with constraints are shown in Fig. 11. Fig. 11a demonstrates that the density in the dis-
charging section converges to ρ10 = 85 veh/mi, which is lower than ρe = 90 veh/mi. According 10 

to the fundamental diagram in Fig. 7, the steady state fow would be a bit lower than the desired 
fow rate. However, the difference is negligible. The VSL command in section 1 converges to 
v1 = 30 mi/h and the VSL command in section 9 converges to v9 = 55 mi/h, which are not 
exactly the same as the desired values due to the application of the constraints. 
In Fig. 10, ρ9 and ρ10 converge to the corresponding equilibrium point in less than 10 min while 
ρ1 converges to ρe 

1 much slower (in about 20 min). The reason of this phenomenon is the different 
values of ρe 

1 and ρe 
9. As discussed in [69], a low value of speed limit would suppress the capac-
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Figure 11: Controller Performance with Constraints 

(a) Vehicle Densities (b) VSL Commands 

Figure 12: System Behavior without Control 

(a) Vehicle Densities without Control (b) Bottleneck Flow with and without Control 

ity of the section. After the incident occurs, v1 decreases to a low value and ρ1 increases rapidly, 
since because of the outfow of section 1, q2 is suppressed by v1. Then the process of adjusting ρ1 

from the overshoot to ρe 
1 takes long time due to the low level of q2. 

On the other hand, from Fig. 11, we can see that with the constrained VSL, ρ1 converges fast and 
no overshoot is observed. This is because v1 is constrained by (14) - (16) thus fails to adjust ρ1 

back to ρe 
1 after overshooting, however, as stated before, the difference is negligible. Similarly, in 

Fig. 11b, the VSL command v1 converges to 30 mi/h in less than 10 min and stays at that value. 
Since the VSL commands only take whole 5 mi/h values due to (14), small variation of v1 in the 
continuous case are all rounded up. Therefore, in the constrained case, there are no variations of 
v1 around 30 mi/h. 
Fig. 12a demonstrates how vehicle densities evolve in scenario 1 without any control. The den-
sity increases dramatically in the discharging section to 370 veh/h and propagates upstream. Even 
after the incident is removed at t = 35 min, the shockwave continues propagating backwards and 
takes longer time to discharge. Fig. 12b shows the fow rate at the bottleneck with and without 
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Figure 13: Growth and Discharge of the Queue 

(a) (b) 

control. During the incident, the fow rate decreases to less than 3000 veh/h due to capacity drop 
in the case of no control, while the bottleneck fow converges to 5600 veh/h with the combined 
VSL and LC controller. Again, the fow rate under control is higher than the real capacity of the 
bottleneck due to the assumption of triangular fundamental diagram. 
We use scenario 1 to examine the growth of the queue at the entrance to the controlled network. 
The numbers of vehicles in the queues are plotted in Fig. 13 with respect to the time t. When 
the demand d = 6500 veh/h, the maximum number of vehicles in the queue is 1700 in the case 
of no control, while the number is less than 500 in the control case, which demonstrates that the 
combined VSL and LC controller reduces the queue size signifcantly. The queues grow slower 
and discharge faster with lower demand, as less vehicles arrive at the tail of the queue. 
We also use a microscopic traffc model that is closer to the real environment in order to confrm 
the improvements predicted by theory and demonstrated by the macroscopic model. In addition, 
the microscopic model allows us to evaluate additional performance criteria such as number of 
stops and lane changes that affect safety as well as the environmental impact of VSL and LC con-
trollers. We simulate the I-710 traffc fow network shown in Fig. 9 for the above mentioned 3 
traffc scenarios. The simulated demand consists of 85% light duty passenger vehicles and 15% 
trucks. This ratio represents the highest truck ratio at peak hours on I-710, therefore shows the 
worst traffc condition [70]. To show consistency of the results, we conducted 10 sets of Monte-
Carlo simulations with different random seeds for each scenario. The curves in Fig. 14 are gener-
ated from a single simulation. The evaluation results in Table 1 - 3 are the average of 10 simula-
tions. 
Fig. 14 shows the density and fow rate of the discharging section in both microscopic and macro-
scopic simulations. We can see that the density curve in macroscopic and microscopic simula-
tions match each other. The microscopic fow rates in the no control cases are very similar and 
consistent with those in macroscopic simulations. However, when the combined VSL and LC 
controller is applied, the fow rates in microscopic simulations are lower than those in macro-
scopic simulations, which means that the fow speed in the discharging section in microscopic 
simulations is lower than what we get from the macroscopic model. 
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Figure 14: Comparison of Macroscopic and Microscopic Models 
— Microscopic without Control, - - - Macroscopic without Control 
— Microscopic with Control, - - - Macroscopic with Control 

(a) (b) 

(c) (d) 

(e) (f) 

The deviation in speed is due to the following factors: 

1. Modeling error. In the macroscopic model, we use a simplifed triangular fundamental di-
agram to model the discharging section, which implies that the fow speed at the desired 
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Figure 15: Fundamental Diagram with Combined Controller 

density is vf. However, the actual speed would be lower than vf. Especially when the LC 
controller is applied, drivers are usually conservative when merging to the open lanes. 

2. Speed limit following delay. In the macroscopic model, we assume that the fow speed fol-
lows the speed limit exactly with no delay. However, in the microscopic model, the traffc 
fow needs time and space to accelerate to the desired speed limit. When vehicles change 
lanes, they do not adjust to new speeds instantaneously. 

3. Friction effect. The friction effect refects the empirically observed drivers’ fear of mov-
ing fast in the open lanes when an incident or slowly moving vehicles exist in neighboring 
lanes [71]. In microscopic simulation, this phenomenon is captured and has an effect when 
compared with the macroscopic simulations. 

Fig. 15 demonstrates the relationship between ρ10 and qb at the equilibrium state under the com-
bined VSL and LC controller in microscopic simulations. In Fig. 15, the negative slope part, i.e. 
the congested part of the fundamental diagram is not observed even when the demand d is higher 
than the capacity, since the controller protects the bottleneck from getting congested. For differ-
ent levels of demand, the data points concentrate in different clusters which shows that the con-
troller homogenizes the traffc fow. Furthermore, when d ≤ 3000 veh/h, the data points stay 
close to the line with the slope vf = 65 mi/h. When d keeps increasing, the data points move to 
the right side of the line due to the factors we explained above. 
We use the following measurements to evaluate the performance of the proposed controller. To 
be precise, in scenario 1 and 2, the measurements start at the time instant that the incident begins 
(t = 5 min) and terminate at the time instant 10 minutes after the incident ends (t = 45 min 
in scenario 1 and t = 25 min in scenario 2), so that the traffc states can achieve steady state. 
In scenario 3, where the incident is not removed, the measurements start at the time instant that 
the incident begins (t = 5 min) and terminate at t = 45 min. In each scenario, we collect the 
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Table 1: Evaluation Results of Scenario 1 

Demand 6000 veh/h 6500 veh/h 
Control No Control LC Only VSL Only Control Improvement No Control LC Only VSL Only Control Improvement 

Tt 18.85 17.12 18.95 16.85 -10.59% 20.72 17.67 21.21 16.83 -18.76% 
s̄ 11.16 2.45 3.61 1.90 -83.00% 12.10 2.55 3.78 1.91 -84.21% 
c̄ 4.00 4.75 4.74 3.78 -5.60% 4.67 5.54 5.88 4.31 -7.71% 

NOx 1.56 1.49 1.61 1.49 -4.43% 1.64 1.58 1.60 1.53 -6.71% 
CO2 558.56 543.22 577.59 536.01 -4.04% 589.46 556.47 605.59 537.21 -8.86% 

Energy 178.65 173.67 184.76 171.40 -4.06% 186.78 177.93 193.73 170.31 -8.82% 
PM25 0.049 0.048 0.047 0.050 0.66% 0.054 0.054 0.053 0.050 -7.73% 

data of all vehicles that pass through the bottleneck during the above defned measuring peri-
¯ (b)Average number of stopsT .tods and calculate the following values: (a)Average travel time ¯ 

¯ 

s. 
c. (d)Average fuel consumption rate. (e)Average CO2 emis-

sion rate. (f)Average NOx emission rate. (g)Average PM25 emission rate. Control effects on traf-
fc mobility are evaluated using the average travel time. Let Nv denote the number of vehicles 

Tt is defned as 

¯(c)Average number of lane changes 

pass through the bottleneck during the measuring period. Average travel time 

NvX 

i=1 

T̄t 

where ti,in and ti,out denote the time instant vehicle i enters and exits the network respectively. 
Note that our simulation network has enough space upstream of the controlled segment, therefore 
the time waiting in the queue is also counted. 
Control effects on traffc safety are evaluated by the average number of stops and average number 
of lane changes. Less stops and lane changes indicate smoother traffc fow and lower probability 

s and¯ 

(ti,out − ti,in)/Nv = 

of crash [16]. defned¯ are asc 

Nv NvX X 
¯s̄ = c = 

i=1 i=1 

where si, ci are number of stops and lane changes performed by vehicle i respectively. For envi-
ronmental impact, we measure the average fuel consumption rate and the average emission rates 
of CO2, NOx, and PM25. These rates are uniformly defned as: 

Nv NvX X 
R = Ei/ di 

i=1 i=1 

where Ei denotes the fuel consumed or a certain type of emission generated by vehicle i in the 
highway network, di represents the distance traveled by vehicle i in the network, and R denotes 
the fuel consumption rate or the tailpipe emission rate of CO2, NOx, or PM25. The fuel con-
sumption rate and emission rates are calculated using the MOVES model of the Environment 
Protection Agency (EPA) based on the speed and acceleration profle of each vehicle [72]. 

si/Nv, ci/Nv 
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Table 2: Evaluation Results of Scenario 2 

Demand 6000 veh/h 6500 veh/h 
Control No Control LC Only VSL Only Control Improvement No Control LC Only VSL Only Control Improvement 

Tt 12.41 11.87 13.46 11.63 -6.25% 13.58 12.62 15.02 12.42 -8.54% 
s̄ 5.16 0.75 2.16 0.65 -87.37% 5.72 1.58 2.33 0.91 -84.09% 
c̄ 3.68 3.80 3.90 3.52 -4.31% 4.27 4.81 5.01 3.91 -8.33% 

NOx 1.42 1.41 1.44 1.39 -2.48% 1.48 1.49 1.51 1.42 -4.05% 
CO2 483.37 479.17 497.81 470.16 -2.73% 508.13 504.16 524.36 487.18 -4.12% 

Energy 154.53 151.65 159.18 150.36 -2.70% 161.04 161.15 167.66 154.18 -4.26% 
PM25 0.041 0.041 0.041 0.041 -0.77% 0.046 0.047 0.047 0.045 -2.17% 

Table 3: Evaluation Results of Scenario 3 

Demand 6000 veh/h 6500 veh/h 
Control No Control LC Only VSL Only Control Improvement No Control LC Only VSL Only Control Improvement 

Tt 19.84 17.25 18.16 16.69 -15.89% 21.25 16.75 20.45 16.55 -22.13% 
s̄ 15.46 2.13 4.00 1.74 -88.75% 16.12 2.54 3.72 1.83 -88.65% 
c̄ 4.61 4.55 5.11 4.21 -8.60% 4.58 5.36 6.36 4.10 -10.48% 

NOx 1.58 1.51 1.58 1.50 -4.95% 1.58 1.55 1.66 1.50 -4.95% 
CO2 570.72 538.41 564.54 529.76 -7.18% 568.96 550.32 597.94 523.25 -8.04% 

Energy 182.55 172.17 180.58 169.39 -7.21% 182.85 175.99 191.26 168.11 -8.06% 
PM25 0.052 0.047 0.047 0.050 -3.74% 0.052 0.053 0.053 0.050 -3.74% 

Table 1, 2 and 3 demonstrate the results of microscopic evaluation of all 3 scenarios under differ-
ent traffc demands. From the results, we can see that the combined VSL & LC controller is able 
to provide signifcant improvements in traffc mobility, safety and environment. For traffc mobil-
ity, the proposed controller reduces the average travel time of each vehicle by 6.25% - 22.13%. 
For traffc safety, the combined VSL and LC controller dramatically decreases the average num-
ber of stops by 83% - 88.75% in different scenarios, therefore drastically reduces the instances 
of the stop-and-go traffc, smooths the traffc fow and damps the shockwave. Average number 
of lane changes is also decreased by 5.6% - 10.48%. The combined VSL and LC controller ho-
mogenizes the density and speed in each section. Drivers tend to not change lane if densities and 
speeds are similar in all lanes, therefore the VSL control reduces the number of lane changes in 
the network under consideration. This is highly important for traffc safety in highway segments 
with high truck ratio. Trucks not only take long time and large space to change lane, their large 
size also blocks the eye sight of drivers, which makes lane changes of trucks much more danger-
ous than other vehicles. 
The proposed controller reduces the fuel consumption rate and tailpipe emission rate from two 
perspectives. First, it reduces the travel time of vehicles, therefore decreases the emission levels 
of vehicles waiting in the queue. Second, it smooths the traffc fow and suppresses the acceler-
ation and deceleration, therefore decreases the emission in these transient states. In the simula-
tion, fuel consumption rate is decreased by 4.26% - 8.82%. The improvement in CO2 emission 
rate is approximately proportional to the improvement of fuel consumption rate, since CO2 is the 
main product of fuel burnt. The proposed controller reduces NOx emission rate by about 3.54% -
6.71%. The emission rate of PM25 is also decreased by 3.74% - 7.73%. Therefore, the combined 
VSL and LC controller is able to bring environmental benefts. 
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The question how much of these improvements is due to VSL and LC controller alone is also 
answered using these simulation studies. From Table 1 - Table 3, we can see that when the LC 
controller is applied alone, all evaluation criteria improve except for the average number of lane 
changes. The improvements on Tt and s̄ are signifcant, while other criteria are only improved 
slightly. As discussed in Section 3.3, the LC controller is able to recommend upstream vehicles 
to make lane changes before stopping at the queue and avoid the capacity drop therefore reduce 
the average travel time and average number of stops. Improvements on environmental criteria are 
results of improvements of traffc mobility. However, for the average number of lane changes, 
the LC controller only makes the lane changes take place in advance, instead of avoiding them, 
thus fails to reduce c̄. Furthermore, when the VSL controller is applied alone, only the average 
number of stops is reduced. Other criteria are not improved and in some cases are even deteri-
orated by the VSL controller. This is because the VSL controller (10) is designed based on the 
assumption that the capacity drop has already been removed by the LC controller. When the LC 
controller is absent, VSL is not able to improve the bottleneck fow and reduce the vehicle den-
sity. But when the VSL controller is applied together with the LC controller, all criteria are fur-
ther improved since the VSL stabilizes the vehicle densities at the desired equilibrium point and 
homogenizes the traffc fow. When the traffc fow is homogenized in each section and lane, the 
drivers do not tend to change lanes frequently, hence the average numbers of lane changes are 
also reduced. 
Comparing the three scenarios, the improvement on each measurement criteria in scenario 2 ap-
pears to be less signifcant than the other 2 scenarios. The reason is that the incident duration in 
scenario 2 is very short. 

4 Coordinated Variable Speed Limit, Ramp Metering and Lane 
Change Controller 

The coordination of RM and VSL considers network mobility, on-ramp queues and fairness be-
tween the mainline and the ramps. The objective is to keep a balanced delay time between ve-
hicles on the mainline and the ramps and avoid queues on the ramps from spilling back to the 
urban roads. In this section, we use an analytical method to design a coordinated VSL and RM 
controller based on a cell transmission macroscopic model with triangular fundamental diagram 
which together with a lane change controller guarantees stability of the traffc fow and conver-
gence of traffc density to the desired equilibrium point exponentially fast. Considering the fact 
that RM controllers have been widely deployed in the United States, we assume that the RM con-
trol command is determined before the VSL and design the VSL controller to coordinate with 
the RM and stabilize the traffc fow. The coordinated VSL and RM controller with lane change 
is evaluated using Monte Carlo microscopic simulations and shows signifcant improvement in 
traffc mobility, safety and the environment impact. 
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Figure 16: Effects of LC and VSL on Fundamental Diagrams 

(a) w/ and w/o LC (b) w/ and w/o VSL 

4.1. System Modeling 
4.1.1. Effect of VSL on the Fundamental Diagram 

Consider the highway bottleneck shown in Fig. 9. A bottleneck is introduced by an incident that 
blocks one lane. The speed limit upstream the bottleneck is the free fow speed vf = 65 mi/h. 
As discussed in Section 3.3, the lane change controller can avoid the capacity drop. However, as 
shown in Fig.16a, in the fundamental diagram with lane change control, the low ρd part is very 
close to its triangular approximation, which means that the fow speed is close to vf , while the 
fow speed decreases as ρd approaches ρd,c. In the previous section we attribute the reduction of 
speed to modeling error, delay of speed limit following and driver’s caution when passing the in-
cident site. This deviation of speed will not harm the beneft of VSL with respect to traffc mobil-
ity when designing the VSL controller based on the triangular fundamental diagram as long as ρd 

is stabilized at ρd,c. However, if the speed limit upstream the bottleneck is vf , vehicles need to de-
celerate when approaching the bottleneck, which leads to shock waves that propagate upstream. 
If we decrease the speed limit upstream the bottleneck to vd, such that 0 < vd < vf , accord-
ing to [19], the critical density in the fundamental diagram will be shifted to higher value and the 
slope of the under-critical part of the fundamental diagram will be decreased and made closer to 
a straight line. Our microscopic simulations confrm this statement. The black solid line in Fig. 
16b shows the fundamental diagram under a speed limit of 40 mi/h. Compared to the one under 
65 mi/h, which is shown as the blue solid line in Fig. 16b, the capacity of the bottleneck is not 
decreased despite under a lower speed limit as the critical density is increased from ρ̃d,c to ρd,c. 
As we can see in the fgure, this fundamental diagram is very close to its triangular approxima-
tion, that is, the speed deviation at ρd,c is very small. If we design the coordinated VSL and RM 
controller based on this fundamental diagram and let the VSL command converge to vd at the 
equilibrium state, the shockwave upstream the bottleneck will be attenuated. We demonstrate this 
with microscopic simulations in Section 4.4. To conclude, under speed limit of vd, the highway 

37 



Integrated Traffc Flow Control in a Connected Network 

Figure 17: Confguration of the Highway Segment 

bottleneck can be modeled with high accuracy as equation 4 

4.2. Cell Transmission Model with Ramp Flows 
The highway segment to be controlled by the coordinated VSL and RM controller is shown in 
Fig. 17. The bottleneck is introduced by a lane closure. The highway segment upstream the bot-
tleneck is divided into N + 1 sections, which are indexed as section 0 through section N . For 
i = 0, 1, ..., N , ρi, qi, ri, si represent the vehicle density, mainline in-fow rate, on-ramp fow rate 
and off-ramp fow rate in section i respectively, where ρi, si are measurable, ri are determined by 
the RM controller, therefore also measurable. For i = 0, 1, ..., N − 1, vi denote the variable speed 
limit in section i. In section N , the speed limit is a constant denoted by vd. qb denotes the fow 
rate through the bottleneck. Let Ri = ri − si be the net ramp fow and Li the length of section i, 
for i = 0, 1, ..., N . According to the fow conservation law, we have 

1 
ρ̇i = (qi − qi+1 + Ri), for i = 0, 1, ..., N − 1 

Li (20)
1 

ρṄ = (qN − qb + RN )
LN 

The fow rate and bottleneck model is the same as (3) and (4). For the sake of completeness, we 
write the equations here. 

q0 = min{d, C0, w0(ρj,0 − ρ0)} 
qi = min{vi−1ρi−1, Ci, wi(ρj,i − ρi)}, i = 1, . . . , N 

(21) 

� 
vdρN , ρN ≤ ρd,cqb = (22)
wb(ρj,d − ρN ), ρN > ρd,c 
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4.3. Controller Design 
In this section, the coordinated VSL and RM controller is designed. We frst design the VSL con-
troller by assuming that the RM control command is given. Then we choose the ramp metering 
strategy, ALINEA/Q, to manage the ramp fows and the queue lengths on ramps. 

4.3.1. Design of VSL 

The goals of designing the VSL controller include: (1) Given any type of RM controller, the VSL 
controller should be able to coordinate with it and stabilize the density ρN in the discharging sec-
tion at the critical value ρd,c, in order to keep qb at the highest level. (2) Homogenize the traffc 
fow upstream the bottleneck in order to improve the traffc safety and bring environmental bene-
fts. Consider the subsystem which includes section 1 through section N. Defne the error states 

ei = ρi − ρd,c, for i = 1, 2, ..., N 

We have 
1 

ėi = (vi−1ρi−1 − viρi + Ri), for i = 1, 2, ..., N − 1 (Li 
vN −1ρN −1−vdρN +RN (23) 

LN 
, ρN ≤ 0 

ėN = vN −1ρN −1−wb(ρj,b−ρN )+RN , ρN > 0
LN 

Let PN−λiLi+1ei+1 + vdρd,c − j=i+1 Rj 
vi = , for i = 0, 1, ..., N − 2 ( 

ρi 
(24)−λN−1LN eN +vdρN −RN , ρN ≤ ρd,cρN −1 vN−1 = −λN−1LN eN +wb(ρj,b−ρN )−RN , ρN ≤ ρd,cρN −1 

Substitute the controller (24) into the open-loop system (23), we have the following closed-loop 
system: 

Li+1 
ėi = −λi−1ei + λiei+1, for i = 1, 2, ..., N − 2 ( Li 

≤ 0−λN−2eN−1 + 
L
L 
N

N 

−1 
(λN−1 − vd)eN , ρN (25)ėN−1 = −λN−2eN−1 + LN (λN−1 + wb)eN , ρN > 0

LN −1 

ėN = −λN−1eN 

Theorem 4.1. ei = 0, for i = 1, 2, ..., N is the unique and isolated equilibrium point of the 
closed-loop system (25) and is guaranteed to be globally exponentially stable. The rate of expo-
nential convergence depends on the control design parameters λi, i = 0, 1, ..., N − 1. 

The proof of Theorem 4.1 is similar to the proof of Theorem 3.1. According to Theorem 4.1, 
the steady state value of ρi is ρi,ss = ρd,c, i = 1, ..., N . The steady state value of vi is vi,ss = PN vd − j=i+1 Ri/ρd,c, i = 1, ..., N − 1. Therefore, by applying the coordinated VSL and RM 
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controller, ρ1 through ρN are stabilized and homogenized. The effect of a ramp fow is compen-
sated by its upstream VSL and does not affect downstream traffc. If Ri = 0, then vi,ss = vd, for 
i = 1, ..., N − 1. That is the upstream speed limit converges to vd. By adjusting the value of vd, 
we can guarantee that the shockwave resulted by speed deviation between actual traffc fow and 
the triangular fundamental diagram is eliminated. 
Now let us consider the dynamics of ρ0 and v0. Since q1 converges to vdρd,c, if the demand d > 
vdρd,c, ρ0 will increase. Once ρ0 > ρj,0 − d/w0, we have 

1 
ρ̇0 = (w0(ρj,0 − ρ0) − v0ρ0 + R0) (26)

L0 

Substitute (24) into (26), we have 

NX1 
ρ̇0 = (w0(ρj,0 − ρ0) − vdρd,c + Rj )

L0 j=0 PNAssume that j=0 Rj is constant, then PN 
j=0 Rj − vdρd,c

ρ0 = ρj,0 + 
w0 PNis a stable equilibrium point. As long as < vdρd,c, ρ0 will not exceed the jam density j=0 Rj 

ρj,0 and v0 will not go negative, thus the VSL controller is feasible. 
For driver’s acceptance and safety, we as well apply the constraints (14) - (16) to the VSL con-
troller (24). 

4.3.2. Design of the RM Controller 

According to Theorem 4.1, the VSL controller (24) can stabilize the system and improve the mo-
bility as long as the net ramp fow is lower than the bottleneck capacity. It seems that RM control 
is unnecessary. However, if no RM is applied and large ramp fows fush into the mainline, the 
merging of ramp fows will severely disturb the mainline fow. Furthermore, when the net ramp 
fow is high, the VSL controller (24) will suppress the mainline fow in order to spare the ca-
pacity for the ramp fows. That is, without RM control, the ramp fow will always have priority 
which may harm the fairness between the ramp fows and the mainline fow, or even make the 
VSL controller infeasible. Furthermore, the RM controller should be able to manage the queue 
on the ramps so that the queues do not spill backwards to the urban road network. We adopt the 
ALINEA/Q, which modifes the classic ALINEA ramp metering strategy with queue adjustment. 
The original ALINEA/Q method proposed in [38] includes the downstream occupancy and the 
queue length in the feedback loop. In this paper, to be consistent with the VSL controller, we use 
the downstream density instead of occupancy. 
For an on-ramp i, two RM rates, ri

d(k) and ri
q(k), are decided respectively based on the down-
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stream density and the queue length on the ramp at each time step t = kTc. The fnal RM rate 
ri(k) is the maximum of the two. i.e. 

ri
d(k) = r(k − 1) + βd[(ρd,c − ρi(k))] 

ri
q(k) = βq(wi

r − wi(k)) + di(k − 1) (27) 

ri(k) = max{r d(k), rq(k)}i i 

where ρi(k) is the density in the highway section that connects to ramp i, wi(k) is the queue 
rlength on ramp i at time step k, di(k − 1) is the demand from ramp i within time step k − 1, wi is 

the reference queue length of ramp i. ri
d(k) is an integral feedback controller that regulates ρi(k) 

to be close to ρd,c, which helps maintain the vehicle density on mainline at the desired equilib-
rium value. ri

q(k) adjusts the RM rate in order to prevent the queue length from being too large, 
ri.e. if wi(k) is larger than wi , the RM rate will increase to discharge excessive vehicles in the 

queue and newly arrived vehicles. Since the fnal RM rate is the maximum of the two, the ramp 
fow will get the priority to pass the bottleneck if the ramp queue is large, while the mainline fow 
will get the priority if the vehicle density on the mainline is high. In this way, the ALINEA/Q 
strategy maintains the fairness between the ramp fows and the mainline fow and avoids the ramp 
queues from piling up towards the urban road. 

4.4. Numerical Simulations 
In this section , we use the microscopic simulator VISSIM to carry out Monte Carlo simulations 
to evaluate the performance of the coordinated VSL, RM and lane change control on traffc mo-
bility, safety and the environment. 

4.4.1. Scenario Setup 

We evaluate the proposed controller on the highway segment in Fig. 9. To coordinate with the 
ramps, we divide the highway segment in to 8 sections, the VSL signs are deployed at the begin-
ning of section 0 through 6. An incident blocks the middle lane at the end of section 7 and creates 
a bottleneck. 4 on-ramps, which are equipped with RM, and 5 off-ramps are connected to the 
highway segment. The lane change control is deployed at the beginning of section 7. The inci-
dent occurs at 5 minutes after simulation starts, and lasts for 30 min. The capacity of the high-
way segment is 6800 veh/h without incident. During the incident, the ideal bottleneck capacity is 
about 4500 veh/h. We load the network with the real demand at 5pm on Monday, which is a peak 
hour. The mainline demand is 4500 veh/h, the on-ramp demand from upstream to downstream 
are 400 veh/h, 500 veh/h, 300 veh/h, 300 veh/h respectively. 

4.4.2. Simulation Results 

Fig. 19 shows the curve of ρ7 and ρ0, which are the vehicle density of the discharging section and 
the frst VSL controlled section, respectively. When there is no control, ρ7 starts increasing im-
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Figure 18: Geometry of Simulation Network 

Figure 19: Vehicle Densities w/ and w/o Control 
—with control, —no control 

(a) Density in section 7 (b) Density in section 0 

Figure 20: Density Contours 

(a) vd = 40 mi/h (b) vd = 65 mi/h 

mediately as the incident occurs at t = 5 min. In addition the shockwave propagates upstream, 
which makes ρ0 starts increasing at t = 25 min and reaches 500 veh/mi. The high density in sec-
tion 0 does not discharge until 15 min after the incident is removed. When the coordinated con-
troller is applied, ρ7 increases slightly and is stabilized at 110 veh/mi. ρ0 increases immediately 
after the incident since v0 decreases to reduce the fow into downstream sections and is stabilized 
at around 400 veh/h which is lower than that without control. 

42 



Integrated Traffc Flow Control in a Connected Network 

Figure 21: Queue Length w/ and w/o Control 
—VSL + RM, —RM only 

(a) Queue length on r11 (b) Queue length on r4 

Fig. 20 demonstrates the contour plot of vehicle densities with respect to time and space with 
different values of vd. When vd = 40 mi/h, high density is held in section 0 during the incident, 
while downstream sections are highly homogenized. ρ2 is higher than ρd,c at the beginning of the 
incident as the ramp fows r11 and r12 fush in but then discharged under control. The density in 
section 6 is slightly higher than ρd,c as vehicles receive the lane change recommendations and 
make lane changes thus slightly disturbs upstream fow. When vd = 65 mi/h, as explained in 
Section 4.1.1, a shockwave propagates upstream. After the incident is removed, the vehicles in 
section 0 fush downstream and meet with the shockwave, which leads to a high density area in 
section 2. However in this case, the discharging section is still well protected. As the shockwave 
propagates upstream, vehicle densities converge to ρd,c gradually from downstream section to 
upstream section. This is because we use the cascade structure of VSL controller in Fig. 4, which 
attenuates the shockwave section by section. Thus the controller is robust to parameter selection. 
Fig. 21 shows the queue length on ramp r11 and r3, with RM control alone and with the coordi-
nated controller. With RM control alone, the queues pile up fast as the densities in mainline in-
crease. Due to the queue adjustment mechanism of ALINEA/Q, the queue lengths are maintained 
around the reference value. With the coordinated controller, the queue lengths increase in the 
transient process when the incident begins and the mainline density is being adjusted to the de-
sired level and then discharge fast. After the incident is removed, large fow fushes downstream, 
the RM controller decrease the rate to give priority to the mainline, therefore the queue lengths 
increase. 
We use the following metrics to evaluate the performance of the coordinated controller. To evalu-
ate traffc mobility, we use: (a) average travel time T̄  

t; for traffc safety, use (b) average number of 
stops s̄ and (c) average number of lane changes c̄; for the environment, we use (d) average emis-
sion of CO2 and (e) average fuel consumption. The detailed defnition of the above metric can be 
found in [5]. 
Table 4 shows the evaluation results. The improvement in traffc mobility, safety and the environ-
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Table 4: Evaluation Results 

Control Type No Control RM + VSL Improvement 
t (min)T̄ 15 11 27% 

s̄ 23 4 82% 
c̄ 5.1 4.6 10% 
CO2 (g/veh/mi) 585 538 8% 
Fuel (g/veh/mi) 187 172 8% 

ment is signifcant. The average travel time is reduced by about 27% as the bottleneck throughput 
is increased. For traffc safety, the number of stops dramatically decreased by 81% as the lane 
change control prevented vehicles from stopping at the bottleneck and waiting for lane changes. 
The 10% reduction in number of lane changes is contributed by both homogenization of mainline 
fow and the regulated merging behavior of ramp fows. For the environment metrics, the reduc-
tions of CO2 emission and energy consumption are usually proportional to each other, which are 
both around 8% in this case. 

5 Comparison of Feedback Linearization and Model Predictive 
Strategies in Variable Speed Limit Control 

Given the fact that LC control is able to relieve or eliminate the capacity drop, one important 
question arising at this point is that if other VSL control strategies are combined with the LC con-
trol, will the system performance exceed the performance under the FL controller? Intuitively, 
since MPC control follows an optimization based routine, it should provide the ‘optimal’ perfor-
mance to some extent. However, FL controller guarantees exponential stability of the equilibrium 
point with highest bottleneck fow rate. Therefore, by tuning the feedback gain, the FL controller 
should be able to force the system to converge as fast as possible, only limited by the saturation 
of control input. 
In this section, we propose FL and MPC schemes for VSL-actuated highway traffc, where we as-
sume that an LC controller is active just upstream of the bottleneck. Both controllers are designed 
with a CTM-based model representing the ideal system. TTS performance and robustness with 
respect to perturbations on model parameters and measurement noise of the proposed controllers 
are evaluated via simulation studies. Results show both VSL controller is able to improve the 
total time spent under different levels of perturbation and measurement noise. Furthermore, feed-
back linearization VSL can provide better performance than model predictive VSL with much 
less computational effort. 
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5.1. Nonlinear Model Predictive Control 
Model predictive control strategy generates the control command at each control step by solving 
a fnite horizon optimal control problem in a receding horizon manner. In this section, we formu-
late the cost function of the MPC problem as the quadratic error of the states of system (9). To 
take into consideration the vehicles that are blocked upstream the VSL controlled segment, we 
augment the system by add a new state Q, that is 

Q̇ = d − q0, (28) 

with Q = 0 at t = 0. Therefore, if the number of vehicles upstream of section 0 is greater than 
the number at time 0, Q > 0, otherwise Q ≤ 0. We should note here that the introduction of Q 
is only for the purpose of evaluating the TTS. Both the FL and MPC controllers are implemented 
based on system (9). The performance metric TTS is defned as follows: Z T NX 

TTS = Q(t) + ρi(t)Li dt (29) 
0 i=0 

The open-loop highway system (9) can be implicitly expressed as 

ė = f(e, u) (30) 

Here we formulate the problem of fnding the VSL commands u(·) that try to maintain system 
(30) at the equilibrium point as the following fnite-horizon constrained optimal control problem 
(OCP): Z kTc+Tp 

minimize e(τ)T ˜ Ru(τ )dτQe(τ ) + u(τ )T ˜ 
u(·) kTc 

subject to e(kTc) = ê(kTc) (31) 
ė = f(e, u), ∀τ ∈ [t, t + Tp] 

vmin − ve ≤ u(τ) ≤ vmax − ve, 

where t is the current control sampling instant in time, ê(t) is the measurement on error states 
taken at that instant, Q̃ and R̃ are weighting matrices on error and control input, respectively, 
whereas Tp is the prediction horizon. The optimization problem is solved at the beginning of each 
control step kTc, with ê(kTc) as the initial condition. Constraint (16) has already been included 
in the constraints of the optimization problem. (14) and (15) are also applied to the MPC VSL 
commands before applied to the system. 
Due to the continuous-time dynamics, the OCP (31) is an infnite dimensional optimization prob-
lem. We resort to approximating it as a fnite dimensional nonlinear program (NLP) via the direct 
multiple shooting method [73]. Details on direct methods from numerical optimal control litera-
ture can be found in [74]. 
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Figure 22: Simulation System 

5.2. Numerical Simulation 
In this section, macroscopic simulation is used to evaluate the performance and robustness of the 
FL and NMPC schemes combined with LC. 

5.2.1. Scenario setup 

The FL and MPC controllers have evaluated on the network shown in Fig. 9 In our simulation, 
the incident happens 5 minutes after the simulation starts, and it lasts for 30 min. The nominal 
demand is 6000 veh/h. The desired equilibrium point of this network is calibrated to be: 

eρ0 

= · · 
= 278 veh/mi 

e eρ ρ= 21 

v 

eρ· = 7 

= 15.8 mi/h 
= 110 veh/mi 

ev0 
e e e= · · = 40 mi/h= v · = v1 2 7 

For the FL controller, we choose λi = 50 for i = 0, 1, . . . , 6. The NMPC controller is im-
plemented using the direct multiple shooting method via the CasADi toolbox [75] in MATLAB 
8.5.0 (R2015a), on a 64-bit Windows PC with 3.4-GHz Intel Core i7 processor and 8-GB RAM, 
where IPOPT [76] is used for solving the NLPs. In our simulation, we choose the prediction hori-
zon Tp = 10 min, which is much greater than the control time step Tc = 30 s. Weight matrices 
are chosen as Q̃ = I and R̃ = 0.1I, with I denoting the identity matrix of appropriate dimen-
sions. The computation time of NMPC is around 0.35 seconds, whereas it is negligible for FL. 
The NMPC scheme is still computationally tractable, as its computation time of 0.35 s per step is 
negligible with respect to the control time step of 30 s. 
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Figure 23: Simulation System 

5.2.2. Performance and Robustness Analysis with Macroscopic Simulations 

To compare the performance and robustness of the FL and MPC VSL controllers, we evaluate the 
following criteria for the two controllers: 1) Total time spent (TTS) as defned in (29), and sensi-
tivity of TTS with respect to 2) perturbation on traffc demand, 3) perturbation on model param-
eters and 4) measurement noise. In the simulation, the FL and MPC controllers are synthesized 
with the ideal model (30), but the control command are applied on a perturbed model. The struc-
ture of the simulation system is shown in Fig. 22. For the traffc demand, we add up to ±20% 
perturbation on the nominal demand 6000 veh/h. For the model parameters, as shown in Fig. 
23, we respectively add up to ±20% perturbation on the nominal value of ρd,c and Cb, which di-
rectly alter the shape of the fundamental diagram of the bottleneck section. For the measurement 
noise, we use Gaussian white noise with different levels of standard deviation up to σ = 0.1ρd,c 

to match the scale of the density measurements. 
Fig. 24 shows the behavior of the vehicle density in the discharging section under FL and MPC 
controller. Both controllers are able to maintain the density around the desired value ρe 

7 = 110 
veh/h after the incident occurs at t = 5 min. The oscillation is introduced by the roundup-to-
5 constraint. However, the MPC controller introduces higher frequency chattering and a sharp 
decrease at the beginning of the incident. 
A series of simulation experiments are conducted with different levels of perturbation and mea-
surement noise. Figure 25 shows how TTS varies with varying demand levels. The fgure show-
cases that both controllers are able to function properly under various levels of demand, the TTS 
increases and decreases approximately linear with the demand. This demonstrates that both MPC 
and FL VSL controllers are robust with respect to the variation of demand, which is due to the 
selection of the desired equilibrium point (6) - (7). At the equilibrium point, the speed limit in 
section 0 is decreased to block excessive traffc demand at upstream of the entire control seg-
ment, therefore the bottleneck fow is not affected. Furthermore, under different levels of per-
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Figure 24: ρ7 with FL and MPC 

Figure 25: Performance sensitivity of no control (black), FL (blue), and NMPC (red) to 
perturbations on demand d. 
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Figure 26: Performance sensitivity of no control (black), FL (blue), and NMPC (red) to 
perturbations on Cb. 

Figure 27: Performance sensitivity of no control (black), FL (blue), and NMPC (red) to 
perturbations on ρd,c. 
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Figure 28: Performance sensitivity of FL (blue) and NMPC (red) to increasing levels of standard 
deviation in measurement noise. 

turbation, the performance of FL and MPC controller are similar. But the TTS of FL is always 
slightly lower than that of MPC, which shows that MPC fails to beat FL in TTS although the con-
trol commands are generated by solving the optimization problem in receding horizon fashion. 
In fgures 26 and 27, the change in TTS is plotted with respect to different values of perturbation 
on Cb and ρd,c, respectively. These results show that both controllers achieve signifcant improve-
ments over the no control case and are able to operate properly even under situations with high 
amount of uncertainty in these model parameters. With perturbation on Cb, the TTS under FL and 
MPC are increased by 45% and 43% in the worst case, respectively. Considering the fact that in 
this case the bottleneck capacity is decreased by 20% as a baseline, the TTS does not increase too 
much due to the modeling error and is still much lower than that in the no control case. The worst 
case for the perturbation on ρd,c is 27% worse than the non-perturbed value for FL, and 16% for 
NMPC. 
The sensitivity of TTS performance in the case of varying levels of standard deviation in mea-
surement noise is given in fgure 28, which shows that the TTS under both controllers increases 
with the standard deviation of measurement noise. However, the system does not diverge as the 
no control case. The performance of FL is always better than that of NMPC in this case. 

5.2.3. Performance and Robustness Analysis with Microscopic Simulations 

Table 5 shows the microscopic simulation results with calibrated model parameter set: 

w1 = 14 mi/h, wb = 40 mi/h, ρd,c = 110 veh/mi 

The performance of the MPC controller is similar to that of the FL controller. 
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Table 5: Evaluation Results with Original Parameters 

TTT (hr) Stops LC CO (g/veh/mi) Nox (g/veh/mi) CO2 (g/veh/mi) Energy (g/veh/mi) 

No Control 
mean ± std 1270 ± 42 23.2 ± 1.3 6.6 ± 0.2 3.4 ± 0.1 1.8 ± 0.1 605 ± 20 194 ± 6 
Improvement - - - - - - -

LC Only 
mean ± std 1075 ± 40 10.5 ± 0.9 5.9 ± 0.3 3.4 ± 0.1 1.7 ± 0.1 552 ± 16 176 ± 5 
Improvement 15% 55% 11% 0% 6% 9% 9% 

FL 
mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 
Improvement 18% 57% 17% 12% 11% 13% 13% 

MPC 
mean ± std 1018 ± 41 8.7 ± 1.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 525 ± 15 168 ± 5 
Improvement 20% 63% 17% 12% 11% 13% 13% 

Table 6: Evaluation Results under Different w1 

TTT (hr) Stops LC CO (g/veh/mi) Nox (g/veh/mi) CO2 (g/veh/mi) Energy (g/veh/mi) 

FL 

w1=9 
mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 
Improvement 18% 57% 17% 12% 11% 13% 13% 

w1=14 
mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 
Improvement 18% 57% 17% 12% 11% 13% 13% 

w1=6 
mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 
Improvement 18% 57% 17% 12% 11% 13% 13% 

MPC 

w1=9 
mean ± std 1096 ± 55 12.3 ± 2.4 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 533 ± 16 170 ± 5 
Improvement 14% 47% 17% 9% 11% 12% 12% 

w1=14 
mean ± std 1018 ± 41 8.7 ± 1.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 525 ± 15 168 ± 5 
Improvement 20% 63% 17% 12% 11% 13% 13% 

w1=6 
mean ± std 1226 ± 61 12.1 ± 1.9 5.6 ± 0.3 3.1 ± 0.1 1.6 ± 0.1 546 ± 20 174 ± 6 
Improvement 3% 48% 15% 9% 11% 10% 10% 

Table 7: Evaluation Results under Different ρd,c 

TTT (hr) Stops LC CO (g/veh/mi) NOx (g/veh/mi) CO2 (g/veh/mi) Energy (g/veh/mi) 

FL 

ρd,c = 100 
mean ± std 1024 ± 44 8.8 ± 2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 528 ± 14 169 ± 5 
Improvement 19% 62% 17% 12% 11% 13% 13% 

ρd,c = 110 
mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 
Improvement 18% 57% 17% 12% 11% 13% 13% 

ρd,c = 120 
mean ± std 1031 ± 43 9.4 ± 2.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 526± 15 168 ± 4 
Improvement 19% 59% 17% 12% 11% 13% 13% 

MPC 

ρd,c = 100 
mean ± std 1236 ± 41 11.4 ± 0.3 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 544 ± 16 174 ± 5 
Improvement 3% 51% 17% 9% 11% 10% 10% 

ρd,c = 110 
mean ± std 1018 ± 41 8.7 ± 1.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 525 ± 15 168 ± 5 
Improvement 20% 63% 17% 12% 11% 13% 13% 

ρd,c = 120 
mean ± std 1242 ± 35 11.6 ± 1.0 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 542 ± 17 173 ± 6 
Improvement 2% 50% 17% 9% 11% 10% 11% 

Table 8: Evaluation Results under Different wb 

TTT (hr) Stops LC CO (g/veh/mi) Nox (g/veh/mi) CO2 (g/veh/mi) Energy (g/veh/mi) 

FL 

wb=20 
mean ± std 1025 ± 36 9.6 ± 1.0 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 527 ± 13 169 ± 4 
Improvement 19% 59% 17% 12% 11% 13% 13% 

wb=40 
mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 
Improvement 18% 57% 17% 12% 11% 13% 13% 

wb=60 
mean ± std 1042 ± 34 10.2 ± 1.8 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 526 ± 15 168 ± 4 
Improvement 18% 56% 17% 12% 11% 13% 13% 

MPC 

wb=20 
mean ± std 1098 ± 58 12.4 ± 2.4 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 533 ± 16 170 ± 5 
Improvement 14% 47% 17% 9% 11% 12% 12% 

wb=40 
mean ± std 1018 ± 41 8.7 ± 1.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 525 ± 15 168 ± 5 
Improvement 20% 63% 17% 12% 11% 13% 13% 

wb=60 
mean ± std 1092 ± 53 12.3 ± 2.2 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 529 ± 15 169 ± 5 
Improvement 14% 47% 17% 9% 11% 13% 13% 
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Table 6 - Table 8 demonstrate the simulation results of MPC and FL controller under different 
values of model parameters. From the result, we can see that the FL controller is robust with re-
spect to the perturbations on w1, wb and ρd,c. As to MPC, the mobility performance is signif-
cantly adversed by the perturbations on w1 and ρd,c, which both change the value of the equilib-
rium point. But MPC is robust with respect to the perturbations on wb which does not change the 
equilibrium point and can be compensated by the control input. 

6 Stability Analysis of Cell Transmission Model under All Op-
erating Conditions 

In Section 3 and Section 4, we designed a coordinated variable speed limit, ramp metering and 
lane change control based on the frst-order cell transmission model. However, the analysis of dy-
namical behavior and stability properties of the open-loop cell transmission model which takes 
capacity drop into consideration is missing from the previous work, which makes it diffcult for 
us to perform an analytical comparison of the open-loop and closed-loop performance of the VSL 
controlled cell transmission model. In addition, the analysis of the closed-loop behavior in Sec-
tion 3 and Section 4 is performed with a simplifed CTM, i.e. consider only the region in the state 
space near the desired equilibrium point (6) and under the assumption that the demand is higher 
than the bottleneck capacity. It remains unclear whether the global stability of the desired equilib-
rium point is still valid with the complete CTM and in other operating scenarios. 
In [57], Gomes et al. performed a thorough analysis of the equilibrium points and their stability 
properties of the CTM model. However, the authors did not take the capacity drop phenomenon 
into consideration. Reference [58] developed suffcient conditions for the stability of the equilib-
rium points of CTM in terms of connectivity of a graph associated with the traffc network. The 
results of [57] and [58] are established based on the monotonicity of CTM. However, if the CTM 
is modifed to account for capacity drop and the fact that the discharging fow rate of a congested 
road section decreases with density [5, 26, 59, 60], then the CTM is no longer monotone. 
Therefore, in this section, We use the CTM which take into consideration the effect of capacity 
drop which is due to microscopic phenomena such as forced lane changes at a bottleneck [5] and 
the decreasing discharging fow of the road section, then consider all possible traffc fow scenar-
ios, identify all equilibrium points and analyze their stability properties for a single road section, 
then extend the results to arbitrary number of sections under different traffc demand levels and 
capacity constraints as well as under all initial density conditions, based on which the design of 
the VSL controller which guarantees global stability of the closed-loop system with complete 
CTM and under all possible operating scenarios is perform in the next section. 
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6.1. Stability of Traffc Flow in a Single-Section Road Seg-
ment 

Consider a single road section of unit length with an infow q1 and outfow q2, expected to meet a 
demand of fow d as shown in Fig. 29. We assume that the vehicle density ρ is uniform along the 

Figure 29: Single Road Section 

d

2q
1q

section, i.e. it is independent of distance from the entrance to the exit of the section and does not 
vary across the lanes in the vertical direction. Under these assumptions, the evolution of ρ with 
respect to time is given by the following differential equation: 

ρ̇ = q1 − q2, 0 ≤ ρ(0) ≤ ρj , (32) 

where 
q1 = min{d, C, w(ρj − ρ)},( 

min{vf ρ, w̃(ρ̃
j − ρ), (1 − �(ρ))Cd} if Cd < C 

q2 = , 
min{vf ρ, w̃(ρ̃

j − ρ), Cd} otherwise 

vf ρc = w(ρj − ρc) = w̃(ρ̃j − ρc) = C, (33) 
0 < ρc < ρj , 0 < w̃ < w, vf > 0,⎧ 

Cd⎨0 if 0 ≤ ρ ≤ 
�(ρ) = vf ,⎩ 

�0 otherwise 

and the constants in equation (32),(33) are defned as follows: 

• C: the capacity of the road section. 

• w: the back propagation speed. 

• ρj : jam density, the highest density possible, at which q1 = 0. 

• vf : free fow speed of the road section. 

• w̃: the rate that the outfow q2 decreases with ρ, when ρ ≥ ρc. 

• ρ̃j : the jam density associated with outfow q2. 
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• ρc: the critical density of the road section, at which vf ρc = w(ρj − ρc) = w̃(ρ̃j − ρc) = C. 

• Cd: the downstream capacity. 

In equation (33), the infow q1 is dictated by the upstream demand d as well as the potential abil-
ity of the section to absorb traffc fow, which is the value min{C, w(ρj − ρ)}. If ρ ≤ ρc, the 
section can absorb as much fow as the capacity C, however if ρ > ρc, the section’s ability to 
absorb upstream fow decreases with ρ at a rate w. When ρ = ρj , q1 = 0 as the section is com-
pletely congested. The outfow q2 is dictated by the ability of the section to send traffc fow to 
downstream and the downstream capacity. When ρ ≤ ρc, the section’s ability to send traffc fow 
increases with ρ, but when ρ > ρc, this ability decreases with ρ at a rate w̃ [59, 77–79]. Since 
w > w̃, we have w̃(ρ̃j − ρ) > w(ρj − ρ) for all ρ > ρc, which captures the phenomenon that if the 
downstream segment has enough capacity, the density in a congested road section upstream will 
eventually decrease to a value less than or equal to ρc. The capacity of the downstream segment 
is Cd. If Cd < C and ρ ≤ Cd , then the outfow q2 = vf ρ can increase up to Cd. However, when 

vf 

ρ > Cd , the section generates more fow than Cd, a queue will form at the outlet, which may 
vf 

cause forced lane changes which in turn reduce the fow speed leading to the reduction of fow 
to lower than the capacity Cd i.e. to (1 − �0)Cd [5, 26]. This phenomenon is known as capacity 
drop. The original CTM is modifed to include the capacity drop effect as shown in equation (33). 
The model (32) - (33) with �0 = 0 is the CTM of [80]. The �0 > 0 denotes the level of capac-
ity drop, in which case, despite the availability of fow, q2 is restricted from reaching the capacity 
Cd. Note that capacity drop can only occur when the downstream capacity Cd is lower than the 
capacity of the section C. In system (32)-(33), we model the capacity drop using a reduction in 
the downstream capacity Cd which has been verifed by microscopic simulations using VISSIM 
in [5]. The modeling of capacity drop has been discussed in [60] more extensively where dif-
ferent models are considered. These models do not change the methodology and results of this 
section, which can be easily extended to different capacity drop models. 
The purpose of this section is to analyze the stability properties of the model (32)-(33). Since 
these properties will depend on the characteristics of the road section defned by the constants 
C, Cd, the demand d which could vary and the magnitude of capacity drop �0 which may depend 
on microscopic effects [5, 60], the following fve possible operating scenarios are identifed and 

5S 
represented by the sets Ωi, i = 1, 2, ..., 5. The union of these sets Ωi, as shown in Fig. 30, 

i=1 

covers all possible situations. Let I = (Cd, C, d, �0) be the state of the road section. We analyze 
the stability properties of the dynamical model (32)-(33) when I ∈ Ωi, i = 1, 2, ..., 5. Theorem 
6.1 presents the results of the analysis. 

Theorem 6.1. For constant but otherwise arbitrary demand d, we have the following results: 

a) Let I ∈ Ω1. Then ∀ρ(0) ∈ [0, ρj ], ρ(t) converges exponentially fast to d . 
vf 

b) Let I ∈ Ω2. Then 

Cd d (1−�0)Cd• ∀ρ(0) ∈ [0, ], ρ(t) converges exponentially fast to = . 
vf vf vf 

54 



Integrated Traffc Flow Control in a Connected Network 

Figure 30: All Possible Operating Scenarios 

dC

dC C

0(1 ) dd C 

0(1 ) dd C 

0(1 ) d dC d C  

dd C

1
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4

5dC C

• ∀ρ(0) ∈ (C
vf
d , ρj − 

w
d ], ρ(t) = ρ(0), ∀t ≥ 0. 

= ρj − (1−�0)Cd• ∀ρ(0) ∈ (ρj − d , ρj ], ρ(t) converges exponentially fast to ρj − d . 
w w w 

c) Let I ∈ Ω3. Then 

• ∀ρ(0) ∈ [0, Cd ], ρ(t) converges exponentially fast to d . 
vf vf 

• ∀ρ(0) ∈ (C
vf
d , ρj ], ρ(t) converges exponentially fast to ρj − (1−�

w 
0)Cd . 

d) Let I ∈ Ω4. Then ∀ρ(0) ∈ [0, ρj ], ρ(t) converges exponentially fast to ρj − (1−�
w 
0)Cd . 

e) Let I ∈ Ω5. Then ∀ρ(0) ∈ [0, ρj ], ρ(t) converges exponentially fast to min{d,C} . 
vf 

Proof. a) When I ∈ Ω1, we plot the relationship of q1, q2 given by equation (33) in Fig. 31. From 

Figure 31: Fundamental Diagram for I ∈ Ω1 
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j d

w
 

the density equation (32), the equilibrium points of the system are the values of ρ for which ρ̇ = 
0, which happens when q1 = q2. It is clear from Fig. 31 that the only intersection of q1 and q2 

is the point ρe = d , which implies that this is the only equilibrium of ρ in the region [0, ρj ] of 
vf 

feasible values of ρ. We defne the Lyapunov function 

(ρ − d/vf )
2 

V (ρ) = ,
2 
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whose time derivative 
d d

V̇ (ρ) = (ρ − )ρ̇ = −(ρ − )(q2 − q1). 
vf vf 

We show in Appendix A.1 that 

V̇ ≤ −α(ρ − 
d 
)2 , 

vf 

(1−�0)Cd−d (w̃−w)[ρc−(ρj − d )]
wwhere α = min{vf , , } > 0. Hence ρ converges exponentially fast to 

ρj −d/vf ρj −d/vf 
d with a rate greater than or equal to α for all possible initial conditions in [0, ρj ] [81]. The rate 
vf 

of convergence is guaranteed to be greater than or equal to α as it is clear from the value of V and 
V̇ . 
b) When I ∈ Ω2, the plot of q1, q2 generated from equation (33) is given in Fig. 32. In this case, 

Figure 32: Fundamental Diagram for I ∈ Ω2 
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q1 and q2 intersect at one point ρ = d and q1 = q2 for all ρ ∈ (Cd , ρj − d ]. Therefore, we 
vf vf w 

have one isolated equilibrium point ρe 
1 = d and an equilibrium manifold which is the interval 

vf 

(C
vf
d , ρj − 

w
d ]. 

From Fig. 32, we know that ∀ρ ∈ [0, Cd ], q1 = (1 − �0)Cd = d and q2 = vf ρ which gives 
vf 

Cd
ρ̇ = −vf ρ + d, ∀ρ(0) ∈ [0, ], 

vf 

whose solution is 
d d Cd−vf t ≤ρ(t) = + (ρ(0) − )e . 
vf vf vf 

Cd CdHence ∀ρ(0) ∈ [0, ] we have ρ(t) ∈ [0, ], ∀t ≥ 0 and according to the solution above, ρ(t)
vf vf 

d (1−�0)Cdconverges exponentially fast to = . 
vf vf 

For ρ(0) ∈ (C
vf
d , ρj − 

w
d ], we have q1 = q2, therefore ρ̇ = 0, which implies that ρ(t) = ρ(0), ∀t ≥ 

0, for all ρ(0) ∈ (C
vf
d , ρj − 

w
d ]. 
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If ρ(0) ∈ (ρj − 
w
d , ρj ], it is clear from Fig. 32 that q2 > q1 which implies that ρ̇ < 0 until 

ρ(t) = ρj − 
w
d at which time ρ̇ = 0. This implies that for all ρ(0) ∈ (ρj − 

w
d , ρj ], ρ(t) converges at 

least asymptotically with time to ρj − 
w
d . In Appendix A.2 we show that this rate of convergence 

is exponential, i.e. 
d d |ρ(t) − (ρj − )| ≤ c0e −αt , ∀ρ(0) ∈ (ρj − , ρj ], 
w w 

where c0 > 0 and α = min{w, w − w̃} > 0. 
c) When I ∈ Ω3, q1 and q2 described by equation (33) are plotted in Fig. 33. From Fig. 33, it 

Figure 33: Fundamental Diagram for I ∈ Ω3 

C
q

dC
fv

w
w1q

2q

c
j j

f

d

v

d

f

C

v

0(1 ) dC
d

0(1 )j dC

w







j d

w
 

0(1 )j dC

w







is clear that the only values of ρ for which q1 = q2 are 
v
d 
f 

and ρj − (1−�
w 
0)Cd , which implies that 

d ρj − (1−�0)Cdthe system has two isolated equilibrium points ρ1 
e = 

vf 
and ρ2 

e = 
w when I ∈ Ω3. 

We show below that ρe 
1 = d is exponentially stable with a region of attraction [0, Cd ] and ρe 

2 = 
vf vf 

ρj − (1−�0)Cd 

w is exponentially stable with a region of attraction (C
vf
d , ρj ]. 

Cd CdFor ρ(0) ∈ [0, ], we have q1 = d, q2 = vf ρ, therefore ρ̇ = −vf ρ + d, ∀ρ(0) ∈ [0, ], whose 
vf vf 

solution is 
ρ = e −vf t(ρ(0) − 

d 
) + 

d
, 

vf vf 

which implies that ρ(t) ∈ [0, Cd ], ∀t ≥ 0 and ρ(t) converges exponentially fast to ρe 
1 = d . 

vf vf 

Consider the equilibrium point ρe 
2 and choose the Lyapunov function 

(ρ − ρe)2 

V (ρ) = 2 ,
2 

then V̇ = −(ρ − ρ2 
e)(q2 − q1). We show in Appendix A.3 that 

V̇ ≤ −α(ρ − ρe 
2)

2 , 

where α = min{d−(1−�0)Cd , w, (w − w̃)} > 0, ∀ρ(0) ∈ (Cd , ρj ] which implies exponential 
ρe−Cd/vf vf2 
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= ρj − (1−�0)Cdconvergence to the equilibrium point ρe 
2 w , ∀ρ(0) ∈ (C

vf
d , ρj ]. 

d) When I ∈ Ω4, q1 and q2 described by equation (33) are plotted in Fig. 34. From Fig. 34, it is 

Figure 34: Fundamental Diagram for I ∈ Ω4 
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ρj − (1−�0)Cdclear that q1 = q2 when ρ = ρe = 
w , which is a unique equilibrium when I ∈ Ω4. 

Choose the Lyapunov function 
(ρ − ρe)2 

V (ρ) = ,
2 

then V̇ = −(ρ − ρe)(q2 − q1). We show in Appendix A.4 that 

V̇ = −α(ρ − ρe)2 , 

d−(1−�0)Cdwhere α = min{d−Cd , , w, (w − w̃)} > 0, ∀ρ ∈ [0, ρj ], which implies exponential 
ρe ρe−Cd/vf 

= ρj − (1−�0)Cdconvergence to the equilibrium point ρe
w , ∀ρ(0) ∈ [0, ρj ]. 

e) When I ∈ Ω5, q1 and q2 described by equation (33) are plotted in Fig. 35. In this case it is 
min{d,C}clear that there is only one equilibrium point ρe = , depending whether the demand d < 

vf 

C or d ≥ C. We choose the Lyapunov function 

(ρ − ρe)2 

V (ρ) = 
2 

and show in Appendix A.5 that 
V̇ = −α(ρ − ρe)2 , 

(w̃−w)[ρc−(ρj − d )]
wwhere α = min{vf , } > 0 if d < C and α = min{vf , (w − w̃)} > 0 if d ≥ C,

ρj −d/vf 
min{d,C}∀ρ ∈ [0, ρj ], which implies exponential convergence to the equilibrium point ρe = ,

vf 

∀ρ(0) ∈ [0, ρj]. 
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Figure 35: Fundamental Diagram for I ∈ Ω5 
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6.2. Stability of Traffc Flow in a Multi-Section Road Seg-
ment 

The equilibrium points and their stability analysis of the single section CTM can be extended to 
the general N section case. Consider a road segment which is divided into N (N ≥ 2) sections as 
in Fig. 36. Without loss of generality, we assume that the geometry of all sections is identical and 
each section has unit length. In the single section case, we assume the density ρ to be the same 
along the section. We extend this to the case of multiple sections 1 to N where each section has 
its own density. The capacity of all sections remains the same constant C and the capacity at the 
outlet is Cd whereas the demand d appears at the entrance of section 1 as shown in Fig. 36. It is 
well-known that the CTM in the multiple section case may include discontinuities in the values of 
densities when transitioning from one section to another. The control objective to be achieved via 
VSL, will require all section densities to converge to the same value in order to have smooth fow. 

Figure 36: Multiple Section Road Network 

Ni1 2 N-1

1Nq 

1 2 i 1N  N

Nq1Nq iq1q 2q

d dC

Let ρ = [ρ1, ρ2, ..., ρN ]
T be the state vector of the traffc fow system, where ρi represents the 

density in section i. Section i can absorb the fow min{C, w(ρj − ρi)} from upstream and can 
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generate the fow min{vf ρi, w̃(ρ̃
j − ρi)} into the downstream section. Therefore, the dynamics of 

the vehicle densities in each section are formulated as: 

ρ̇i = qi − qi+1, 0 ≤ ρi(0) ≤ ρj , for i = 1, 2, ..., N, 

q1 = min{d, C, w(ρj − ρ1)}, 
qi = min{vf ρi−1, w̃(ρ̃

j − ρi−1), C, w(ρ
j − ρi)}, i = 2, ..., N, (34)( 

min{vf ρN , w̃(ρ̃
j − ρN ), (1 − �(ρN ))Cd} if Cd < C 

qN+1 = , 
min{vf ρN , w̃(ρ̃

j − ρN ), Cd} otherwise 

where ⎧ 
Cd⎨0 if 0 ≤ ρN ≤ 

�(ρN ) = vf⎩ 
�0 otherwise 

and 0 < �0 < 1 denotes the level of capacity drop at the outlet of the N th section. Since we 
assume that the capacities of all sections 1 to N have the same value C, the capacity drop can 
only happen at the outlet of section N , when Cd < C, which affects the value of qN+1. We know 
that ∀t ≥ 0, the density vector ρ(t) belongs to the feasible set 

S = {ρ|0 ≤ ρi ≤ ρj , for i = 1, 2, ..., N}. 

Let ρe = [ρe 
1, ρ

e 
2, ..., ρ

e
N ]

T be the equilibrium vector of system (34), obtained by setting ρ̇i = 0, 
efor i = 1, 2, · · · , N . Let qi denote the value of qi when ρ = ρe, then the equilibrium condition of 

system (34) is given by 
e e e q = q = ... = q (35)1 2 N+1, 

due to ρ̇i = qi − qi+1 = 0, for i = 1, 2, · · · , N . 
Defne the vector of initial condition ρ(0) = [ρ1(0), ρ2(0), ..., ρN (0)]

T and the parameter vector 
I = (Cd, C, d, �0), whose partition sets are the same as in the case of a single section and are 
shown in Fig. 30. Then the equilibrium states of (34) for all possible I in the sets Ω1 to Ω5 and 
corresponding stability properties are given by the following theorem. 

Theorem 6.2. Let 1 = [1, 1, ..., 1]T be a vector with N elements each equal to 1. For constant but 
otherwise arbitrary demand d, we have the following results: 

a) Let I ∈ Ω1. The equilibrium state of (34) is equal to ρe = d × 1 and it is exponentially stable, 
vf 

i.e for all ρ(0) ∈ S, ρ(t) converges exponentially fast to ρe = d × 1. 
vf 

b) Let I ∈ Ω2. System (34) has an isolated equilibrium state ρe = d × 1, which is locally 
vf 
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exponentially stable, and an infnite number of equilibrium states defned by the set 

d d Cd d 
Se = {(ρj − ) × 1} ∪ {ρ|ρi = , i = 1, 2, ..., N − 1, < ρN < ρj − }

w vf vf w 

d d d d ∪ [ 
N[−1 

{ρ| ≤ ρi < ρj − , ρk = , 1 ≤ k < i, ρr = ρj − , i < r ≤ N}]. 
vf w vf w 

i=1 

All equilibrium states ρe ∈ Se are stable in the sense that for any µ > 0, ∃η > 0, such that 
∀ρ(0) that satisfy kρ(0) − ρek < η, ρ(t) converges to a ρ̄e ∈ Se that satisfes kρ̄e − ρek < µ. 
Furthermore, ∀ρ(0) ∈ {ρ|0 ≤ ρi ≤ Cd/vf , i = 1, 2, ..., N}, ρ(t) converges to ρe = d × 1 

vf 

exponentially fast, and ∀ρ(0) ∈/ {ρ|0 ≤ ρi ≤ Cd/vf , i = 1, 2, ..., N}, ∃ρe ∈ { d × 1} ∪ Se ,
vf 

such that ρ(t) converges to ρe asymptotically with time. 

c) Let I ∈ Ω3. System (34) has two isolated equilibrium states ρe1 = d × 1 and ρe2 = (ρj − 
vf 

(1−�0)Cd ) × 1, which are both locally exponentially stable. Furthermore, ∀ρ(0) ∈ {ρ|0 ≤ ρi ≤ 
Cd/v 

w

f , i = 1, 2, ..., N}, ρ(t) converges to ρe1 exponentially fast and ∀ρ(0) ∈/ {ρ|0 ≤ ρi ≤ 
Cd/vf , i = 1, 2, ..., N}, ρ(t) converges to either ρe1 or ρe2 exponentially fast. 

= (ρj − (1−�0)Cdd) Let I ∈ Ω4. The equilibrium state of (34) is equal to ρe
w ) × 1 and is exponen-

= (ρj − (1−�0)Cdtially stable, i.e for all ρ(0) ∈ S, ρ(t) converges exponentially fast to ρe
w ) × 1. 

min{d,C}e) Let I ∈ Ω5. The equilibrium state of (34) is equal to ρe = × 1 and is exponentially 
vf 

min{d,C}stable, i.e for all ρ(0) ∈ S, ρ(t) converges exponentially fast to ρe = × 1. 
vf 

The proof of Theorem 6.2 is given in Appendix B. 
The above stability properties show that depending on the situation classifed by the operating 
scenarios Ω1 to Ω5 and initial density value in the section, the density will reach an equilibrium 
that is not always the one that corresponds to maximum fow rate. In fact when I ∈ Ω2 there are 
an infnite number of equilibrium points and when I ∈ Ω3, there are two equilibrium points. One 
in the free fow region and one in the congested region depending on the initial density condition. 
The objective of feedback is to close the loop so that the system converges to a single equilibrium 
point for the density which also corresponds to the maximum possible fow rate and speed. The 
feedback control variable is variable speed limit that provides speed commands to the upstream 
section in order to control the infow to the section in a way that guarantees the maximum possi-
ble outfow from the downstream section. Such a design is presented in the next section. 

7 VSL Control of the Cell Transmission Model under All Oper-
ating Conditions 
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7.1. Control of Traffc Flow: Single Section 
The stability analysis of the fow in Section 6.1 shows that if Cd ≥ C, i.e. the downstream capac-
ity is higher than the capacity of the section, i.e. I ∈ Ω5 then the density ρ(t) converges expo-
nentially fast to a unique equilibrium point min{d,C} , which corresponds to the maximum possible 

vf 

fow. The steady state speed of fow in the section is vf and the steady state section fow will be 
at the maximum possible value q = q1 = q2 = min{d, C} according to the model (32)-(33). 
In this case no control action is needed. When Cd < C and d < (1 − �0)Cd, i.e. I ∈ Ω1, the 
demand is lower than the dropped capacity of the downstream segment and therefore the density 
converges exponentially fast to d and the steady state fow speed and fow rate in the section will 

vf 

be vf and d respectively. In this case, no control action is needed as the section operates at the 
maximum possible fow rate level dictated by the demand d. The problem arises when Cd < C 
and d ≥ (1 − �0)Cd. where we have the following control problem cases: 

(i) (1 − �0)Cd = d < Cd < C, i.e. I ∈ Ω2. 

(ii) (1 − �0)Cd < d ≤ Cd < C, i.e. I ∈ Ω3. 

(iii) Cd < d, Cd < C, i.e. I ∈ Ω4. 

In case (i) we showed in previous section that a maximum fow of d = (1 − �0)Cd can be main-
tained at an infnite number of density equilibrium points specifed by an isolated point and an 
equilibrium manifold, which include low and high density values with steady state speeds vss ≤ 
vf . In this case, the control objective is to maintain the maximum fow of d = (1 − �0)Cd with a 

d (1−�0)Cdlowest possible density which in this case is = with free fow speed vf . vf vf 

In case (ii), we showed that we have two stable equilibrium points for density. One at low density 
which is equal to d and one at high density equal to ρj − (1−�0)Cd . In this case, maximum fow 

vf vf 

in the section corresponds to the density equilibrium point ρ = d therefore the control objec-
vf 

tive is to choose the VSL in a way that the density converges to d for all possible initial density 
vf 

conditions. 
In case (iii), there is only one equilibrium point for density which is in the high density region 
and corresponds to the steady state fow of (1 − �0)Cd. In this case, the maximum possible fow is 
Cd and corresponds to the density of Cd . However, the convergence of ρ to Cd does not guarantee 

vf vf 

that q1 and q2 converge to Cd due to the capacity drop. From equation (33) and Fig. 34, we know 
Cd ρj − (1−�0)Cdthat q2 is a function of ρ. For ρ ∈ [0, ], q2 = vf ρ, and for ρ ∈ (Cd , ˜ ], q2 = 
vf vf w̃ 

(1 − �0)Cd. Therefore we have 

lim q2(ρ) = lim vf ρ = Cd and lim q2(ρ) = lim (1 − �0)Cd = (1 − �0)Cd, 
Cd Cd Cd Cdρ→( )− ρ→ ρ→( )+ ρ→ 
vf vf vf vf 

i.e., if ρ converges to Cd from the left side, then q2 converges to the maximum value Cd. How-
vf 

ever, if ρ converges to Cd from the right side, q2 converges to (1 − �0)Cd. Therefore, the control 
vf 
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objective in this case is to choose the VSL so that ρ(t) satisfes the following conditions: ∃t0 > 0, 
such that ∀t ≥ t0, ρ(t) ≤ Cd and limt→∞ ρ(t) = Cd . 

vf vf 

Therefore for all cases (i), (ii) and (iii), the control objective is to choose the VSL control so that 
ρ(t) converges to the desired equilibrium point min{d,Cd} , and the fow rate q1 and q2 converge to 

vf 

the maximum possible level which is equal to min{d, Cd}. 
A reasonable control action is to use VSL control to restrict the incoming fow q1 to the level that 
is within the capacity constraints of the section at the bottleneck so that the density and fow rate 
converge to the desired possible values. As shown in Fig. 37, we apply the VSL command v in 

Figure 37: Road Section with VSL Control 
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the upstream segment of the section under consideration, which is referred to as the VSL zone. 
All vehicles are asked to follow the speed limit v in the VSL zone and follow the free fow speed 
limit vf inside the section. Decreasing the speed limit leads to lower fow q1 from the VSL zone 
to the section as shown in Fig. 37. Fig. 38 shows how the changing of the speed limit v can con-
trol the fow rate q1 entering the section through a nonlinear relationship. Suppose the VSL zone 
has similar characteristics as the road section under consideration. If the VSL command is set to 
v < vf , the fundamental diagram of the VSL zone is distorted such that the parameters ρj , w, w̃ 
remain unchanged, while the maximum possible fow is decreased to vwρj 

, as shown in Fig. 38, 
v+w 

obtained by simple geometric considerations [26, 55, 56]. In Fig. 38, the red line sv denotes the 

Figure 38: Fundamental Diagram of the VSL Zone 
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and the blue line dv denotes the fow rate that the VSL zone sends to the section under consider-
ation. However, since the single section model does not include the density in the VSL zone, the 
fow into the road section from the VSL zone is assumed to be min{d, vwρj }, where vwρj 

is the 
v+w v+w 

maximum possible fow in the VSL zone under speed limit v. Then the density ρ in the section is 
given by the following equation: 

ρ̇ = q1 − q2, 0 ≤ ρ(0) ≤ ρj , 

vwρj 
q1 = min{d, , C, w(ρj − ρ)}, (36) 

v + w 
q2 = min{vf ρ, w̃(ρ̃

j − ρ), (1 − �(ρ))Cd}. 

We design a VSL controller to overcome capacity drop and achieve the control objectives in all 
cases, by frst considering the most complicated case I ∈ Ω4, in which d > Cd. Since in equation 
(36), vwρj 

is the only term in q1 that depends on v, we derive the VSL controller using feedback 
v+w 

vwρjlinearization under the assumption that q1 = 
v+w . Then we show in Theorem 7.1 that, for the 

general equation where q1 = min{d, vwρj 
, C, w(ρj −ρ)}, the derived controller can still guarantee 

v+w 

that ρ converges to Cd and q1, q2 converge to the maximum value Cd. Furthermore, we also show 
vf 

3S 
in Theorem 7.1 below that, when I ∈ Ωi, i.e. d ≤ Cd, the same controller guarantees the con-

i=1 

vergence of ρ to the desired equilibrium point d and the convergence of q1, q2 to the maximum 
vf 

level d. 
As discussed above, when I ∈ Ω4, the desired equilibrium point is ρe = Cd . Defne the error state 

vf 

x = ρ − Cd and recall that the control objective is to force ρ to converge to Cd , i.e. x converge to 
vf vf 

0 from the left side (ρ ≤ Cd ). If x(0) ≤ 0, that is ρ(0) ≤ Cd , we choose v so that 
vf vf 

q1 = q2 − λx, (37) 

where λ > 0 is a design constant to be selected. Thus we have 

ẋ = ρ̇ = q1 − q2 = −λx, 

which implies that ∀x(0) ≤ 0 and t ≥ 0, x(t) ≤ 0 and x converges to 0 exponentially fast. Since 
we assume that q1 = vwρj 

, solving equation (37) for v, we have, 
v+w 

w(q2 − λx) 
v = , (38)

wρj − (q2 − λx) 

whose denominator is guaranteed to be greater than 0 as we show in detail in the proof of Theo-
rem 7.1. 
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If x(0) > 0, i.e. ρ(0) > Cd we choose v such that 
vf 

q1 = q2 − λ(x + δ1), (39) 

where δ1 > 0 is a design constant. Then we have ∀x(0) > 0 

ẋ = ρ̇ = q1 − q2 = −λ(x + δ1). 

Thus x will decrease exponentially toward the value −δ1 < 0. At some fnite time t = t0 > 0, 
Cd Cdx(t0) = −δ2, i.e. ρ(t0) = − δ2, where 0 < δ2 < min{δ1, }, thus ρ(t0) is in the region
vf vf 

of (37),(38). At the time instant t = t0, we have x(t) ≤ 0 and controller (38) is switched on 
which guarantees as shown above that x(t) will converge to zero exponentially fast. Assuming 
that q1 = vwρj 

and solving (39) for v, we have 
v+w 

w(q2 − λ(x + δ1)) 
v = . (40) 

wρj − (q2 − λ(x + δ1)) 

The use of the design constant δ1 is to reduce the incoming fow via VSL so that the density of 
the section reduces to be within the set [0, Cd ], which guarantees convergence to the equilibrium

vf 

point which corresponds to maximum fow and speed. The choice of δ1 will depend on how ag-
gressively we want the density to move to the “good” free speed region. Using the above VSL 
controller derivation and assuming that the speed is not allowed to go below zero or exceed the 
speed limit vf , the following equations summarize the VSL controller for the section under the S 
assumption that q1 = vwρj 

, which we will relax subsequently. When I ∈ 
4 

Ωi, the VSL control 
v+w 

i=1 
is generated as follows: 

w[q2 − λ(x + δ1)] 
v̄ 1 = , 

wρj − [q2 − λ(x + δ1)] 
w(q2 − λx) 

v̄ 2 = , 
wρj − (q2 − λx) 

vi = med{0, v̄ i, vf }, i = 1, 2,⎧ 
Cd Cd (41) 

v1 if ρ(0) > and ρ(t) > − δ2 
vf vf⎪⎨ Cd Cd 

v = v2 if ρ(0) > and ρ(t) = − δ2 , 
vf vf 

Cd Cd⎪v2 if ρ(0) ≤ and ρ(t) ≤⎩ 
vf vf 
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where x = ρ − Cd , and 
vf 

Cd vf wρ
j 

δ1 > 0, 0 < δ2 < min{δ1, }, 0 < λ < 
vf Cd 

are design constants and med{·} denotes the median of the numbers, which indicates that the 
VSL command saturates at the upper bound vf and the lower bound 0. The upper bound vf wρj 

of
Cd 

λ guarantees that the denominator of v is not 0, which we will show in the proof of Theorem 7.1. 
The shape of the function v as it varies with ρ is shown in Fig. 39. 

Figure 39: Switching Logic of VSL Controller 
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For I ∈ Ω5, the VSL control is 
v = vf . (42) 

= min{d, vwρjIn Theorem 7.1 below, we show that the above controller also works for any value of q1 v+w 
ρ)}, and guarantees the exponential convergence of the density to the desired equilibrium point 
and the exponential convergence of the fow rate to the maximum possible value of q1 = q2 = Cd. 

3S 
Furthermore, when I ∈ Ωi, i.e. d ≤ Cd, controller (41) guarantees the exponential conver-

i=1 

gence of ρ to the desired equilibrium point d and the convergence of q1, q2 to the maximum level 
vf 

d. 

Theorem 7.1. For q1 = min{d, vwρj 
, C, w(ρj − ρ)}, we have the following: 

v+w 

4S 
a) Let I ∈ Ωi, i.e. Cd < C, and consider the VSL controller (41). The closed-loop system 

i=1 
min{d,Cd} Cd(36), (41) has a unique equilibrium point ρe = . In addition, ∀ρ(0) ∈ [0, ], ρ(t)

vf vf 

converges to ρe exponentially fast and ∀ρ(0) ∈ (Cd , ρj ], ρ(t) decreases to Cd − δ2 exponen-
vf vf 

tially fast which brings it to the region where ρ(t) converges to ρe exponentially fast. The fow 
rate and speed converge to the desired values of min{d, Cd} and vf respectively with the same 
rate. 
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b) Let I ∈ Ω5, i.e. Cd ≥ C, and consider the VSL controller (42). System (36),(42) has a unique 
min{d,C}equilibrium point ρe = . In addition, ∀ρ(0) ∈ [0, ρj ], ρ(t) converges to ρe expo-

vf 

nentially fast. The fow rate and speed converge exponentially fast to the desired values of 
min{d, C} and vf respectively. 

The proof of Theorem 7.1 is given in Appendix C. Theorem 7.1 shows that the VSL controller 
5S 

(41), (42) guarantees that for all cases I ∈ Ωi, the density, fow rate and fow speed converge 
i=1 

exponentially fast to unique values that correspond to maximum possible fow through the section 
for all initial density conditions within the set [0, ρj ]. Theorem 7.1 shows in an analytically rigor-
ous manner that VSL control can stabilize the fow in the section and force it to converge to the 
maximum possible fow under any situation. This maximum fow depends on the characteristics 
and relationships between demand d and capacities C, Cd as well as capacity drop level �0. It is 
also clear from the analysis of the open-loop system that without the VSL control the fow can 
reach steady states that do not correspond to maximum possible fow. 
From equation (41), we can see that the logic of the VSL controller is to deactivate the capacity 
drop with v1 by suppressing the infow suffciently and then force the system state to converge to 
the desired equilibrium point with v2. This logic and the feedback linearization technique can al-
ways be used to design a VSL controller if different capacity drop models such as those presented 
in [60] are included in the CTM. 

7.2. N -section Road Segment with VSL Control 
The analysis in Section 6.2 shows that the stability properties of the open-loop N -section system 
are similar to those of the single-section system. For the cases I ∈ Ω1 and I ∈ Ω5, ρ(t) converges 

min{d,C}exponentially fast to the unique equilibrium state ρe = d × 1 and ρe = × 1 respectively, 
vf vf 

which corresponds to the maximum possible fow rate. In these two cases no control action is 
needed. 
When I ∈ Ω2 ∪ Ω3, the control objective is to stabilize the system at the equilibrium state ρe = 
d × 1, at which the maximum possible fow rate d is achieved and the densities in each section 
vf 

are stabilized at the lowest possible value whereas the speed of fow converges to the free fow 
speed vf . 
When I ∈ Ω4, the maximum possible fow rate is Cd, which corresponds to the equilibrium state 
ρe = Cd × 1. From equation (34), we know that due to capacity drop 

vf 

lim qN+1(ρN ) = lim vf ρN = Cd 
Cd CdρN →( )− ρN → 
vf vf 

and 
lim qN+1(ρN ) = lim (1 − �0)Cd = (1 − �0)Cd. 

Cd CdρN →( )+ ρN → 
vf vf 

Therefore, in this case, in order to achieve the maximum possible fow rate Cd, we want to choose 
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the VSL control so that there exits t0 ≥ 0 such that ∀t ≥ t0, ρN (t) ≤ Cd and ρi(t) converges 
vf 

to Cd , for i 
vf 

= 1, 2, ..., N . Furthermore we want to achieve a steady state fow speed vf in all 
sections. 
Similar to the single section case, the VSL controller is applied to the N -section road segment as 
shown in Fig. 40. All vehicles in the upstream segment of section 1 are asked to follow the VSL 

Figure 40: VSL Controlled Road Segment 
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command v0 and all vehicles in section i follow the VSL command vi, for i = 1, 2, ..., N − 1. The 
speed limit in section N is set to the constant free fow speed vf . 
If the speed limit of section i is set to be vi ≤ vf , i = 1, 2, ..., N − 1, then the fundamental 
diagram of section i is distorted as shown in Fig. 41. In Fig. 41, si(ρi) denotes the ability of sec-

Figure 41: Fundamental Diagram of Section i 
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tion i to absorb traffc fow from section i − 1. We have si(ρi) = min{viwρj 
, w(ρj − ρi)}, i = 

vi+w 
1, 2, ..., N − 1. di(ρi) denotes the traffc fow generated by section i to go into section i + 1. We 

viwρjhave di(ρi) = min{viρi, }, i = 1, 2, ...N − 1. Therefore, in Fig. 40, we have 
vi+w 

vi−1wρ
j viwρ

j 

qi = min{di−1(ρi−1), si(ρi)} = min{vi−1ρi−1, , , w(ρj − ρi)}, i = 2, ..., N − 1. 
vi−1 + w vi + w 
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For the road segment upstream section 1, i.e. the segment with speed limit v0, whose density 
is not included in system (34), we assume the fow rate generated by this segment to be d0 = 
min{d, v0wρj }, which is independent of the density in the section with speed limit v0, therefore 

v0+w 

v0wρ
j v1wρ

j 

q1 = min{d0, s1(ρ1)} = min{d, , , w(ρj − ρ1)}. 
v0 + w v1 + w 

The speed limit in section N is constant vf , therefore section N can absorb a fow of sN (ρN ) = 
min{C, w(ρj − ρN )}, therefore 

vN−1wρ
j 

qN = min{dN−1(ρN−1), sN (ρN )} = min{vN−1ρN−1, , C, w(ρj − ρN )}. 
vN−1 + w 

For the sake of simplicity, we omit the term w̃(ρ̃v
j −ρi) from di(ρi), where ρ̃v

j is ρ̃j distorted by the 
VSL. As shown in Fig. 41, for i = 1, ..., N − 1, if the outfow qi+1 = w̃(ρ̃jv − ρi), then the infow 
qi ≤ si(ρi) = w(ρj − ρi) < qi+1 will force ρi to decrease until qi+1 =6 w̃(ρ̃jv − ρi). Therefore, 
this simplifcation does not affect the results. The system model with VSL control inputs can be 
formulated as follows: 

ρ̇i = qi − qi+1, 0 ≤ ρi(0) ≤ ρj , for i = 1, 2, ..., N, 

v0wρ
j v1wρ

j 

q1 = min{d, , , w(ρj − ρ1)}, 
v0 + w v1 + w 

vi−1wρ
j viwρ

j 

qi = min{vi−1ρi−1, , , w(ρj − ρi)}, i = 2, 3, ..., N − 1, (43) 
vi−1 + w vi + w 
vN−1wρ

j 

qN = min{vN−1ρN−1, , C, w(ρj − ρN )}, 
vN−1 + w 

qN+1 = min{vf ρN , (1 − �(ρN ))Cd, w̃(ρ̃
j − ρN )}. 

Similar to the single section system, the objective is to design a VSL controller that can overcome 
the capacity drop and achieve the control objectives in all cases. We derive the VSL controller 
using feedback linearization for the case of I ∈ Ω4 then show in Theorem 7.2 that the controller 
also works for all other scenarios. 
When I ∈ Ω4, i.e. d > Cd, we need to decrease v0 to suppress q1 so that the fow from upstream 

v0wρj 
can be handled by the downstream capacity Cd. We start by assuming that q1 = 

v0+w , which 
is the only term in the equation of q1 that depends on v0 and then show that the VSL controller 
works for all values of q1. Furthermore, in this case, the desired equilibrium density is ρei = Cd 

vf 
e e efor i = 1, 2, ..., N and the equilibrium fow speed and fow rate are vi = vf and qi+1 = vi ρ

e
i = Cd 

respectively for i = 1, 2, ..., N − 1. Therefore, we initially assume that qi = vi−1ρi−1 for i = 
2, 3, ..., N , which we relax in Theorem 7.2 below. 
Let x = [x1, x2, ..., xN ]

T , where xi = ρi − Cd , i = 1, 2, ..., N . If xN (0) ≤ 0, i.e. ρN (0) ≤ Cd , we 
vf vf 
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choose v = [v0, v1, ..., vN−1]T , such that 

qi = qi+1 − λi−1xi, i = 1, 2, .., N, (44) 

where λi > 0, i = 0, 1, ..., N − 1 are design constants. Thus we have 

ẋ i = ρ̇i = qi − qi+1 = −λi−1xi, i = 1, 2, ..., N, 

which implies that xi(t) converges to 0 exponentially fast and xN (0) ≤ 0, ∀t ≥ 0. Since we 
v0wρj 

assume that q1 = 
v0+w and qi = vi−1ρi−1 for i = 2, ..., N , solving (44) for v gives 

(q2 − λ0x1)w 
v0 = ,

wρj − q2 + λ0x1 (45)
qi+2 − λixi+1 

vi = , i = 1, 2, ..., N − 1. 
ρi 

If xN (0) > 0, i.e. ρN (0) > Cd , we choose v such that 
vf 

qi = qi+1 − λi−1xi, i = 1, 2, .., N − 1, 
(46) 

qN = qN+1 − λN −1(xN + δ1), 

where δ1 > 0 is a design constant. Then we have 

ẋi = ρ̇i = qi − qi+1 = −λi−1xi, i = 1, 2, ..., N − 1, 

ẋN = ρ̇N = qN − qN+1 = −λN−1(xN + δ1), 

which implies that ∀xN (0) > 0, xN (t) will decrease exponentially toward −δ1 < 0. Therefore 
Cd Cdthere exists t0 > 0, such that xN (t0) = −δ2, i.e. ρN (t0) = − δ2, where 0 < δ2 < min{δ1, },
vf vf 

which is in the region of (44), (45). At t = t0, we have xN (0) < 0 and the controller (45) is 
switched on, in which case x(t) converges to 0 exponentially fast as shown above. Solving (46) 
for v, we have 

(q2 − λ0x1)w 
v0 = ,

wρj − q2 + λ0x1 

qi+2 − λixi+1 
vi = , i = 1, 2, ..., N − 2, (47)

ρi 
qN+1 − λN−1(xN + δ1) 

vN−1 = . 
ρN−1 

Using the above VSL controller and assuming that the speed is not allowed to go below zero 
or exceed the speed limit vf , the following equations summarize the VSL controller for the N -

v0wρjsection road system under the assumption that q1 = 
v0+w and qi = vi−1ρi−1, i = 2, 3, ..., N , 

4S 
which we will relax subsequently. For all I ∈ Ωi, the VSL commands are generated as fol-

i=1 
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lows: 
(q2 − λ0x1)w 

v̄ 0 = , 
wρj − q2 + λ0x1⎧ ⎨qi+2 − λixi+1 

ρi > 0 
v̄ i = ρi , i = 1, 2, ..., N − 2,⎩ 

vf ρi = 0 

qN +1 − λN−1(xN + δ1) 
v̄ N−1,1 = ,

ρN−1⎧ ⎨qN+1 − λN−1xN 
ρN −1 > 0 

v̄ N−1,2 = ρN−1 , (48)⎩ 
vf ρN −1 = 0⎧ 

Cd Cd 
v̄ N−1,1 if ρN (0) > and ρN (t) > − δ2 

vf vf⎪⎨ Cd Cd 
v̄ N−1 = v̄ N−1,2 if ρN (0) > and ρN (t) = − δ2 , 

vf vf 

Cd Cd⎪¯ if ρN (0) ≤ and ρN (t) ≤⎩vN−1,2 
vf vf 

vi = med{0, v̄ i, vf }, i = 0, 1, ..., N − 1, 

Cd vf wρjwhere δ1 > 0, 0 < δ2 < min{δ1, }, λi > vf , for i = 1, 2..., N − 1, 0 < λ0 < . 
vf Cd 

vf wρjIn controller (48), λ0 < 
Cd 

guarantees that the denominator of v0 is always greater than 0. 
λi > vf , for i = 1, 2..., N − 1 guarantees the exponential convergence of the density states, which 
we will show in the proof of Theorem 7.2 below. The switching logic of vN−1 is similar to that of 
v shown in Fig.39 for the single section case. For I ∈ Ω5, the VSL command is 

vi = vf , i = 0, 1, ..., N − 1. (49) 

Similar to the single section case, we can show that v0 is well-defned as its denominator is al-
ways greater than 0. For i = 1, 2, ..., N − 1, vi is also well-defned by setting vi = vf when its 
denominator is equal to 0. 
In Theorem 7.2, we show that the controller (48) also works for the general fow equations (43), 
and guarantees that ρi(t) converges to Cd exponentially fast, for i = 1, 2, ..., N and the fow rates 

vf 

qi converge exponentially fast to the maximum possible fow rate which in this case is equal to 
3S 

Cd, for i = 1, 2, ..., N + 1. We also show in Theorem 7.2 that when I ∈ Ωi, controller (48) 
i=1 

guarantees that ρi converges to d exponentially fast, for i = 1, 2, ..., N and qi converges to d,
vf 

which is the maximum possible fow rate, for i = 1, 2, ..., N + 1. 

Theorem 7.2. We consider the traffc fow model described by (43) with the VSL controller 
(48), (49): 
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4S 
a) Let I ∈ Ωi, i.e. Cd < C. The closed-loop system (43), (48) has a unique equilibrium 

i=1 
min{d,Cd} Cdstate ρe = × 1. In addition, ∀ρ(0) ∈ {ρ|0 ≤ ρN ≤ }, the density vector ρ(t)

vf vf 

converges to ρe exponentially fast and ∀ρ(0) ∈ {ρ|Cd } < ρN ≤ ρj , ρN (t) decreases to 
vf 

Cd −δ2 exponentially fast, which brings it to the region where the density vector ρ(t) converges 
vf 

to ρe exponentially fast. Furthermore, the fow rates qi, i = 1, 2, ..., N + 1 and fow speeds 
vi, i = 0, 1, ..., N − 1 converge to min{d, Cd} and vf respectively which is the state which 
corresponds to the maximum possible fow. 

b) Let I ∈ Ω5, i.e. Cd ≥ C. The closed-loop system (43), (49) has a unique equilibrium state 
min{d,C}ρe = × 1. In addition, ∀ρ(0) ∈ S, the density vector ρ converges exponentially fast to 

vf 

ρe . Furthermore, the fow rates and fow speeds converge exponentially fast to min{d, C} and 
vf respectively, achieving the maximum possible fow at steady state. 

The proof of Theorem 7.2 is presented in Appendix D. Theorem 7.2 shows that the VSL con-
5S 

troller (48)-(49) guarantees that for all cases I ∈ Ωi, the steady state densities, fow rates and 
i=1 

speeds of fow are stabilized at the desired values which correspond to the maximum fow rate 
through the road segment while achieving homogeneous density distribution. 
We should note that in Theorem 7.2, the design of the VSL controller (48) and the stability anal-
ysis of the closed-loop system (43) are performed under the assumption that we have perfect 
knowledge of system parameters of the open-loop system (34) and accurate measurement of the 
density vector ρ. However when I ∈ Ω4, since the desired equilibrium point of the closed-loop 
system (43), i.e. ρe = Cd × 1 lies exactly on the discontinuity plane of the fundamental diagram, 

vf 
Cd Cdwhich is {ρ|ρN = }, when ρ(t) = × 1 at steady state, any disturbance in model parameters 
vf vf 

or measurement noise may push the density in section N to ρN > Cd , which may lead to tempo-
vf 

rary capacity drop which the controller tries to correct leading to a possible oscillation around the 
desired equilibrium point. Even though such oscillations may not have any signifcant impact in 
an actual traffc situation, the proposed controller can be easily modifed to avoid such oscillatory 
response. This is achieved by setting the desired equilibrium point to be ρe = (Cd − σ) × 1, where 

vf 

σ > 0, in order to provide a margin between ρe and the discontinuity at ρN = Cd . Thus in (48), 
vf 

xi = ρi − (Cd − σ). With suffciently large feedback gains λ0, ..., λN , controller (48) is able to 
vf 

stabilize the density state ρ at a point that is arbitrarily close to ρe = (Cd − σ) × 1, therefore avoid 
vf 

the capacity drop. We will demonstrate this with numerical simulations in Section 7.3. Thus, al-
though the controller (48) is designed for accurate system model, it can be robust with respect to 
system disturbance with simple modifcation. How to modify the controller of this paper to be ro-
bust with respect to a wide range of uncertainties is currently under investigation and it is outside 
the scope of this paper. However the ideal properties of the controller of this paper form the basis 
for comparison of any other controller under less ideal situations and for this reason it has its own 
merit. 
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7.3. Numerical Experiments 
In this section, we use numerical simulations to demonstrate the analytical results of the previ-
ous sections, for both open-loop and closed-loop systems. The simulations are performed on 
a two-section road network, whose parameters are: C = 6500 veh/h, w = 20 mi/h, ρj = 
425 veh/mi, vf = 65 mi/h, w̃ = 10 mi/h, ρ̃j = 750 veh/mi, ρc = 100 veh/mi. When I belongs to 
Ω1 to Ω4, we set the downstream capacity Cd = 5200 veh/h, which is less than C, and �0 = 0.15. 
When I belongs to Ω5, we set Cd = 7000 veh/h, which is greater than C. The upstream demand 
d is set to be 4000 veh/h, 4420 veh/h, 5000 veh/h, 6000 veh/h and 6000 veh/h for the cases of I in 
Ω1 to Ω5 respectively. We apply controller (48),(49) to the two-section system with the following 
design constants: λ1 = λ2 = 70 mi/h, δ1 = 20 veh/mi, δ2 = 5 veh/mi. Among the abbreviated 
units we used above, “veh” stands for number of vehicles, “mi” stands for miles and “h” stands 
for hours. 

Figure 42: Phase portrait when I ∈ Ω1(Cd < C, d < (1 − �0)Cd). Both the open-loop and 
closed-loop densities converge to the same low density equilibrium state. Single low 
density equilibrium state. 
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Fig. 42 - Fig. 46 show the phase portraits of the two-section open-loop and closed-loop systems 
when I belongs to Ω1 to Ω5. When I ∈ Ω1, all the density state trajectories of the open-loop sys-
tem, shown in Fig. 42a, converge to the unique equilibrium state ρe = ( d , d ) = (61.5, 61.5),

vf vf 

indicated by the red dot. In Fig.42b, all density state trajectories of the closed-loop system con-
verge to the same equilibrium state as in the open-loop case as expected from the analysis. When 
I ∈ Ω2, all density state trajectories of the open-loop system shown in Fig.43a converge to the 
isolated equilibrium state ρe = ( d , d ) = (68, 68), indicated by the red dot in Fig. 43a, or to the 

vf vf 

equilibrium set 

d Cd d d d d 
Se ={ρ|ρ1 = , < ρ2 ≤ ρj − } ∪ {ρ| ≤ ρ1 ≤ ρj − , ρ2 = ρj − }

vf vf w vf w w 

={ρ|ρ1 = 68, 80 < ρ2 ≤ 204} ∪ {ρ|68 ≤ ρ1 ≤ 204, ρ2 = 204}, 
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Figure 43: Phase portrait when I ∈ Ω2(Cd < C, d = (1 − �0)Cd). The open-loop system has an 
infnite number of equilibrium density states which do not correspond to the 
maximum possible fow speed. Closed-loop system has a single low density 
equilibrium state. Equilibrium state; Equilibrium manifold. 
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Figure 44: Phase portrait when I ∈ Ω3 (Cd < C, (1 − �0)Cd < d ≤ Cd). The open-loop system 
has two equilibrium density states one in the low density and the other in the high 
density region. The closed-loop system has a unique equilibrium state at low density. 

Low density equilibrium state; High density equilibrium state. 
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indicated by the red line in Fig. 43a. When the VSL control is applied, all the density state tra-
( d djectories of the closed-loop system converge to the unique equilibrium state ρe = , ) = 
vf vf 

(68, 68), as shown in Fig. 43b. When I ∈ Ω3, each density state trajectory of the open-loop sys-
tem shown in Fig.44a converges to one of the two isolated equilibrium states, ρe 

1 = (d/vf , d/vf ) = 
(ρj − (1−�0)Cd(77, 77) and ρe = , ρj − (1−�0)Cd ) = (204, 204), indicated by the red dot and red 2 w w 

star respectively. All closed-loop state trajectories shown in Fig.44b converge to the unique equi-
librium state ρ1 

e = (d/vf , d/vf ) = (77, 77). Fig. 45a shows that when I ∈ Ω4, all the density 
(ρj − (1−�0)Cdstate trajectories converge to the unique equilibrium state ρe = 

w , ρj − (1−�
w 
0)Cd ) = 
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Figure 45: Phase portrait when I ∈ Ω4(Cd < C, d > Cd). The open-loop system has a unique 
equilibrium state in the high density region. The closed-loop system has a unique 
equilibrium state at low density. Low density equilibrium state; High density 
equilibrium state. 
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Figure 46: Phase portrait when I ∈ Ω5(Cd ≥ C). Same open-loop and closed-loop response. 
Single low density equilibrium state. 
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(204, 204), indicated by the red dot. The phase portrait of the corresponding closed-loop sys-
tem is plotted in Fig. 45b. As shown in Theorem 7.2, all density state trajectories converge to 
the desired equilibrium state ρe = (Cd/vf , Cd/vf ) = (80, 80), indicated by the red dot in Fig. 
45b. Furthermore, ρ2 converges to ρ2 = 80 when the initial condition satisfes ρ2(0) ≤ 80. If 
ρ2(0) > 80, ρ2(t) decreases to ρ2 = 75 frst, then increases and converges to 80, which guarantees 
the steady-state fow rate Cd = 5200 veh/h. When I ∈ Ω5, capacity drop will not occur since the 
downstream capacity is higher than the capacity of the road sections. All state trajectories in Fig. 
46 converge to the unique equilibrium state ρe = (min{d, C}/vf , min{d, C}/vf ) = (92.3, 92.3). 
The open-loop and closed-loop behavior when I ∈ Ω5 are the same as expected. 
Fig.47 shows the fow rate time responses of the open-loop and closed-loop systems when I ∈ Ω4 

with initial condition ρ = (110, 110). From Fig. 47a, we can see that at t = 0, q1(0) = d = 
6000 veh/h, q2(0) = vf ρ1(0) = 6500 veh/h < q1(0) and decrease to the steady state value of 
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Figure 47: Flow rate when I ∈ Ω4 
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Figure 48: Flow rate with Perturbed vf when I ∈ Ω4 
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4420 veh/h. On the other hand, q3 = (1 − �0)Cd = 4420 veh/h remains constant during the entire 
simulation time (30 min). In Fig. 47b, q3 = (1 − �0)Cd = 4420 veh/h at the beginning of the 
simulation, then jumps to 5200 veh/h, then oscillates a little and converges to Cd = 5200 veh/h. 
The jump in the value of q3 is due to the fact that ρ2 decreases and crosses the value Cd , at which 

vf 

q3 jumps from (1 − �0)Cd to Cd. The values of q1 and q2 also have a jump between t = 1 min and 
t = 2 min. This jump is caused by the switching of the VSL control (48) which at this time does 
not affect q3 since q3 is only a function of ρ2, and does not jump when the VSL switches. 
Fig. 48 shows the performance of the closed-loop system in the same scenario as in Fig. 47, how-
ever with perturbed vf . In this case, the actual free fow speed vf = 0.9vfn, where vfn is the 
nominal value of vf , based on which the controller (48) is designed. That is, the VSL controller 
is over-estimating the fow rate at the bottleneck, therefore sends more fow to section 2 than it 
can handle, which leads to temporary capacity drop, which the controller corrects creating an 
oscillation around an average that corresponds to the desired fow as shown in Fig. 48a. Our con-
troller however can be easily modifed to take care of the uncertainty without changing the fun-
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damentals of the design and analysis. As shown in Fig. 48b, we modifed the controller (48) as 
stated in Section 7.2 by setting xi = ρi − ( Cd − 5) = ρi − 75, i = 1, 2 and increasing the 

vfn 

feedback gains to be λi = 100 mi/h, i = 0, 1. The modifed controller tries to stabilize the 
density vector at ρe = (75, 75), which gives a margin between ρe and the boundary of capac-
ity drop. The increased feedback gains are able to suppress the steady state error to make sure 
that the steady state value of ρ is close to ρe thus capacity drop does not occur. With the modifed 
VSL controller, the steady state density is ρ = (74.2, 78.44), and the steady state traffc fow is 
q1 = q2 = q3 = 4590 veh/h, as shown in Fig. 48b. This a simple case how an uncertainty can 
be dealt with by the proposed controller. The robustness of the proposed controller with respect 
to a wide range of uncertainties is currently under investigation and it is outside the scope of this 
paper that focuses on the control design and analysis under ideal conditions. The results form the 
basis for comparison as uncertainties are included in the model. 

8 Robust VSL Control of Cell Transmission Model with Distur-
bance 

Section 7 shows the possibility of achieving the maximum possible fow rate at a bottleneck and 
avoiding capacity drop, under the assumption that we have perfect knowledge of model param-
eters of the CTM and accurate measurement of the vehicle densities. We have shown as well in 
section 7 that due to the discontinuous nature of the desired equilibrium point, any disturbance or 
measurement noise may lead to a oscillatory behavior of the closed-loop system. We also demon-
strate with numerical simulations that with simple modifcation, the VSL controller can help the 
system avoid the oscillation and stabilize the density at an equilibrium point close to the desired 
one. In this section, we modify the VSL controller by adding the integral action in order to reject 
the constant disturbance which may be introduced by the ramp fows or biased measurement etc. 

8.1. Robust Control of Traffc Flow in a Single-Section Road 
Segment 

Consider a single road section of in Fig. 37, with a constant disturbance µ, which may be intro-
duced by the ramp fows or biased measurement of the fow rate, the evolution of ρ with respect 
to time is given by the following differential equation: 

ρ̇ = q1 − q2 + µ, 0 ≤ ρ(0) ≤ ρj , (50) 
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where 
vwρj 

q1 = min{d, , C, w(ρj − ρ)}, 
v + w 

q2 = min{vf ρ, w̃(ρ̃
j − ρ), (1 − �(ρ))Cd}., 

vf ρc = w(ρj − ρc) = w̃(ρ̃j − ρc) = C, 
(51)

0 < ρc < ρj , 0 < w̃ < w, vf > 0,⎧ 
Cd⎨0 if 0 ≤ ρ ≤ 

�(ρ) = vf ,⎩ 
�0 otherwise 

We assume the constant disturbance µ satisfy that |µ| ≤ µm � Cd, that is, comparing to the 
bottleneck capacity, the magnitude of the disturbance is very small, which also guarantees that 
0 ≤ ρ(t) ≤ ρj , ∀t ≥ 0. 
We defne constants µm < ρL ≤ ρ? < ρU < Cd as shown in Fig. 49 to help the design 

vf 

of the controller. In the equation of q1, the only term that can be controlled by the VSL con-

Figure 49: Design Constants 
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troller is vwρj 
. Let q1v = vwρj 

and assume d < C without loss of generality. We have q1 = 
v+w v+w 

min{d, q1v, w(ρj − ρ)}. Let x1 = ρ − ρ?, system (50)-(51) can be rewritten as: 

ẋ 1 = q1 − q2 + µ, −ρ? ≤ x1(0) ≤ ρj − ρ? (52) 

where 
q1 = min{d, q1v, w(ρj − ρ)} 
q2 = min{vf ρ, w̃(ρ̃

j − ρ), (1 − �(ρ))Cd} (53) 
q1v = median{0, q̄  1v, C}. 

In equation (53), the constraint q1v = median{0, q̄  1v, C} is applied to guarantee that 0 ≤ v ≤ vf , 
where q̄  1v is the unconstrained control input to be designed. When the road section is congested, 
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i.e., x1 is high, we try to decrease q1 to bring x1 back to the low region by letting 

q̄  1v = qs (54) 

where qs < min{vf ρ
L , (1 − �0)Cd, w̃(ρ̃

j − ρj )} is a small constant fow which guarantees that 
∀ρ ≥ ρL, i.e. ∀x1 ≥ ρL − ρ? , qs < q2, which implies that ẋ 1 < 0. Thus, there exists a fnite time 
instant t0 > 0, at which x1(t0) = ρL − ρ? and we set �Z t � 

q̄  1v = q2 − λ1x1 − λ2 x1dτ + c (55) 
t0 

√ 
where λ2 > 0 and λ1 > max{2 λ2, vf + λ2 } > 0. c is a constant we use to guarantee that ρ 

vf 

converges to ρ? asymptotically, which we will show later. Controller (55) is a PI controller which 
tries to reject the disturbance µ and stabilize x1 at x1 = 0. Furthermore, once x1 decreases to the 
uncongested region x1 ≤ Cd − ρ? , we do not want it to go back to the capacity drop region again. 

vf 

Therefore, if x1 increases and reaches ρU − ρ? , we switch back to controller (54). To summarize, 
the controller with hysteresis characteristics can be formulated as below: 

q̄  1v = k(t)( 
k1(0) if x1(0) ≥ ρL − ρ? 

k(0) = 
k2(0) otherwise (56)( 
k2(t) if k(t−) = k1 and x1(t) = ρL − ρ? 

k(t) = , ∀t > 0 
k(t−) otherwise 

where 
k1(t) = qs �Z �t λ1x1(t0) − µm (57)
k2(t) = q2 − λ1x1 − λ2 x1dτ − 

t0 
λ2 

Mapping the fow rate control input into the VSL command, we have 

wρj − q1v 
v = 

wq1v 

where q1v = median{0, q̄  1v, C}. In the equation of k2(t), if k(0) = k2(0) at t = 0, then t0 = 0 
, and if k(t) switches from k1(t) to k2(t) at t = t0, then t0 is the switching time instant. When 
k(t) = k2(t), we have that x1(t) ≤ ρU − ρ?, i.e. ρ ≤ ρU < Cd , thus q2 = vf ρ = vf ρ

? + vf x1 and 
vf 

q1 = median{0, d, q̄  1v}, due to d < C. Let Z t λ1x1(t0) − µm µ 
x2(t) = x1(t)dτ − − , t ≥ t0. (58) 

t0 
λ2 λ2 
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Then we have ẋ 2 = x1. Since Z t 
x2(t) = x2(t0) + ẋ 2dτ, t ≥ t0, 

t0 

and substitute it into (58), we have 

λ1x1(t0) − µm + µ 
x2(t0) = − 

λ2 

Then with k(t) = k2(t), system (52) can be written as 

ẋ 1 = median{0, d, q̄  1v} − (vf ρ
? + vf x1) + µ 

ẋ 2 = x1, ∀t ≥ t0 (59) 
λ1x1(t0) − µm + µ 

x1(t0) ≤ ρL − ρ? , x2(t0) = − 
λ2 

where 
q̄  1v = k2(t) = (vf ρ

? + vf x1) − λ1x1 − λ2(x2 + 
µ 
) (60)

λ2 
√ 

and λ2 > 0, λ1 > max{2 λ2, vf + λ2 } > 0. Let x = [x1, x2]
T be the state vector of system 

vf 

(59). We frst ignore the capacity drop, i.e. assume that (59) holds for all x1 ∈ <, and investigate 
the stability property of system (59) in the following lemma, which we will use to analyze the 
stability the system which takes the capacity drop into consideration. 

Lemma 8.1. Consider system (59), if d + µ ≥ vf ρ
? , we have the following results: 

e1) System (59) has a unique equilibrium point x = [0, 0]T . 

2) ∀x(t0) ∈ <2 , x(t) converges to xe asymptotically. 

3) ∀x(t0) ∈ S = {x|vf ρ
? − µ − d ≤ (λ1 − vf )x1 + λ2x2 ≤ vf ρ

? − µ} ∩ {x| − vf ρ
?−µ 

< x1 < 
vf 

−vf ρ
?−µ−d }, x1(t) ∈ S, ∀t ≥ t0. 
vf 

Proof. Consider the value of q1, we have the following 3 cases: 
1. When 0 ≤ q̄  1v ≤ d, i.e. x ∈ S1 = {x|vf ρ

? − µ − d ≤ (λ1 − vf )x1 + λ2x2 ≤ vf ρ
? − µ}, we 

have q1 = q̄  1v, the dynamics of system (59) become: 

ẋ 1 = −λ1x1 − λ2x2 (61) 
ẋ 2 = x1 

2. When q̄  1v < 0, i.e. x ∈ S2 = {x|(λ1 − vf )x1 + λ2x2 > vf ρ
? − µ}, we have q1 = 0, the 

dynamics of system (59) become: 

˙ = −vf x1 − vf ρ
? + µx1 (62) 

ẋ2 = x1 
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3. When q̄  1v > d, i.e. x ∈ S3 = {x|(λ1 − vf )x1 + λ2x2 < vf ρ
? − µ − d}, we have q1 = d, the 

dynamics of system (59) become: 

ẋ1 = −vf x1 − vf ρ
? + µ + d 

(63) 
ẋ2 = x1 

Therefore the state space is divided as shown in Figure 50. 

Figure 50: State Space 
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It is easy to show that system (62) and (63) have no equilibrium point. System (61) has a unique 
eequilibrium point x = [0, 0]T ∈ S1. Therefore the system (59) has a unique equilibrium point 

ex = [0, 0]T . Consider the Lyapunov function 

V (x) = x T P x, (64) 

where � � 
2 λ1P = 

λ2 + 2λ2λ1 1 

It is easy to check that matrix P is symmetric and positive defnite. Therefore V (x) is positive 
defnite. For all x ∈ S1, we have 

ẋ = Ax 

where � � 

A = 
−λ1 

1 
−λ2 

0 

Therefore the derivative of the Lyapunov function is 

V̇ (x) = x T (AT P + PA)x = −x T Qx, 
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where � � 
2λ1Q = . 

2λ1λ2 

Thus V̇ (x) < 0 for all x ∈ S1\{0}. 
Now we are going to show that if ∃t0 ≥ 0, such that x(t0) ∈ S3, then ∃t1 > t0, such that x(t1) ∈ 
S1. If ∃t0 ≥ 0, such that x(t0) ∈ S3, let α = vf ρ

? − µ − d, according to (63), we have that 

dx2 x1 1 α 
= = − + 

dx1 −vf x1 − α vf vf 
2x1 + vf α 

1 α 
dx2 = − dx1 + 

2 dx1 
vf vf x1 + vf α 

Take the integral of both sides, we have that 

1 α � 2 2 
� 

x2(t) − x2(t0) = − (x1(t) − x1(t0)) + 
2 ln(vf x1(t) + vf α) − ln(vf x1(t0) + vf α) 

vf vf (65)
1 α 1 α 

x2(t) = − x1(t) + 
2 ln(vf 

2 x1(t) + vf α) + x2(t0) + x1(t0) − 
2 ln(vf 

2 x1(t0) + vf α) 
vf v vf vf f 

From (63), we know that x1(t) approaches − α when x ∈ S3. According to (65), x2 approaches
vf 

infnite as x1(t) approaches − α . Thus at some fnite time instant t1, x2(t1) is large enough and 
vf 

(λ1 − vf )x1 + λ2x2 = vf ρ
? − µ − d, i.e. x ∈ S1. 

Then we show that if ∃t0 ≥ 0, at which x(t0) lies on the boundary between S1 and S3, and x(t) 
moves into S3, then ∃t1 > t0, at which x(t0) lies on the boundary between S1 and S3, and x(t) 
gets into S1. Furthermore, V (x(t0)) > V (x(t1)). 
The normal vector of the boundary line which points to S3 is n = [vf − λ1, −λ2]

T . If ∃t0 ≥ 0, at 
which x(t0) lies on the boundary between S1 and S3, and x(t) moves into S3, we have that 

λ1 − vf α 
x(t0) = [x1(t0), − x1(t0) + ]T 

λ2 λ2 

and 
ẋ(t0) = [−vf x1(t0) − α, x1(t0)]

T 

Since ẋ(t0) points to S3, therefore nT ẋ(t0) > 0, that is 

[vf (λ1 − vf ) − λ2]x1(t0) − (vf − λ1)α > 0 

(vf − λ1)α α 
x1(t0) > > − 

vf (λ1 − vf ) − λ2 vf 

λ2 − αdue to λ1 > vf + . According to (63), if x(t0) ∈ S3 and x1(t0) > , then x1(t) > 
vf vf 

− α and ẋ 1(t) < 0, ∀t > t0, as long as x(t) stays in S3. Together with (65), we know that ∃t1 > 
vf 
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t0, at which x(t) crosses the boundary and gets into S1, and x1(t1) > − α and x1(t1) < x1(t0). vf 

For all points on the boundary between S1 and S3, the Lyapunov function is evaluated as 

V (x) = 2x1
2 + 2λ1x1x2 + (λ2

1 + 2λ2)x2
2 , 

whose partial derivative with respect to x1 along the boundary line is 

∂V ∂x2 ∂x2 
= 4x1 + 2λ1x2 + 2λ1x1 + 2(λ1

2 + 2λ2) (66)
∂x1 ∂x1 ∂x1 

λ1−vf αSince x(t0) = [x1(t0), − x1(t0) + ]T on the boundary line, we have that
λ2 λ2 

∂x2 λ1 − vf 
= − . 

∂x1 λ2 

Substituting into (66), we have 
∂V 

= ax1 + b 
∂x1 

where 
λ1 − vf λ1 − vf 

a = 4 − 4λ1 
λ2 

+ 2(λ2
1 + 2λ2)( 

λ2 
)2 

and 
b = 2[λ1 − (λ2

1 + 2λ2)] 
α
. 

λ2 

Note that 
λ1 − vf λ1 − vf 

a = 2[1, ]T P [1, ] > 0 
λ2 λ2 

due to P is positive defnite. And 

a(− 
α 
) + b = −[2λ2

1(λ1 − vf ) + 2λ1λ2]α > 0 
λ2 

λ2 − α ∂V due to α < 0 and λ1 > vf + . Therefore, ∀x1 > , 
∂x1 

= ax1 + b > 0. Therefore,
vf λ2 

−
λ
α 
2 
< x1(t1) < x1(t0) indicates that V (x(t0)) > V (x(t1)). 

Similarly, we can show that if ∃t0 ≥ 0, such that x(t0) ∈ S2, then ∃t1 > t0, such that x(t1) ∈ S1. 
And if ∃t0 ≥ 0, at which x(t0) lies on the boundary between S1 and S2, and x(t) gets into S2, 
then ∃t1 > t0, at which x(t0) lies on the boundary between S1 and S2, and x(t) gets into S1. 
Furthermore, V (x(t0)) > V (x(t1)). 
Summarizing the behavior of the Lyapunov function V (x), we can conclude that ∀x(t0) ∈ <2 , 

ex(t) converges to x = [0, 0]T asymptotically. 
Since in (59), 

−vf x1 − (vf − µ) ≤ ẋ1 ≤ −vf x1 − (vf − µ − d), 

, −vf ρ
?−µthus for all −vf ρ

?−µ 
< x1(t0) < −vf ρ

?−µ−d 
< x1(t) < −vf ρ

?−µ−d , ∀t ≥ t0. Also 
vf vf vf vf 
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we have shown that if x(t) ∈ S1 ∩ {x| − vf ρ
?−µ 

< x1 < −vf ρ
?−µ−d }, x(t) will not leave S1. 

vf vf 

Therefore, ∀x(t0) ∈ S = {x|vf ρ
? − µ − d ≤ (λ1 − vf )x1 + λ2(x2) ≤ vf ρ

? − µ}∩ {x| − vf ρ
?−µ 

< 
vf 

x1 < −vf ρ
?−µ−d }, x1(t) ∈ S, ∀t ≥ t0. 
vf 

eLemma 8.1 shows that, if (59) holds for ∀x1 ∈ <, then the unique equilibrium point x = [0, 0]T 

is globally asymptotically stable. However, the proof of Lemma 8.1 also shows that if x(t0) ∈ S2, 
it is possible that x1(t) approaches −

λ
α 
2 
, which is already in the capacity drop region where (59) 

does not hold. Fortunately, in system (59), the initial conditions are set to be in a certain region. 
We only need to show that for some specifc x(t0), (59) holds for all t ≥ t0 and x1(t) converges 
to 0. 

Theorem 8.1. Consider the system (52)(53) with controller (56), if d + µ ≥ vf ρ
? , then ∀x1(0) ∈ 

[−ρ?, ρj − ρ?], x1(t) converges to 0 asymptotically. 

Proof. ∀x1(0) < ρL − ρ? , k(0) = k2(0). If ∀t ≥ 0, x1(0) < ρU − ρ?, then (59) holds for all 
t ≥ 0, thus x1(t) converges to 0 asymptotically according to Lemma 8.1. If ∃t > 0, such that 
x1(t) = ρU − ρ?, then k(t) switches to k1(t), then for all x1(t) ≥ ρL − ρ? , ẋ 1(t) = qs − q2 < 0, 
thus ∃t0 > 0, such that x1(t0) = ρL − ρ? and k(t0) = k2(t0). Similarly, ∀x1(0) > ρL − ρ? , 
k(0) = k1(0), then ∃t0 > 0, such that x1(t0) = ρL − ρ? and k(t0) = k2(t0). Therefore, we only 
need to consider the case that x1(t0) = ρL − ρ? and k(t0) = k2(t0). As shown in (58) - (60), in 
this case, as long as k(t) = k2(t), the system (52)(53) can be written as 

ẋ1 = median{0, d, q̄  1v} − (vf ρ
? + vf x1) + µ 

ẋ2 = x1, ∀t ≥ t0 

λ1x1(t0) − µm + µ 
x1(t0) = ρL − ρ? , x2(t0) = − 

λ2 

Since x2(t0) = −λ1x1(t0 

λ 
) 
2 

−µm+µ , thus λ1x1(t0) + λ2x2(t0) = µm − µ > 0. And since µm � vf ρ
? , 

> −vf ρ
?−µmwe also have λ1x1(t0) + λ2x2(t0) < vf ρ

? − µ. Furthermore, x1(t0) = ρL − ρ? > 
vf 

−vf ρ
?−µ . Similarly, x1(t0) < −vf ρ

?−µ−d . Therefore x(t0) ∈ S. According to Lemma 8.1, as long
vf vf 

as x1(t) < ρU − ρ?, then x(t) ∈ S, and (61) holds, i.e. 

ẋ = Ax 

λ1x1(t0) 
x1(t0) = ρL − ρ? , x2(t0) = − 

λ2 

where � � 
−λ1 −λ2A = . 
1 0 

Therefore, 
A(t−t0)x(t) = e x(t0), 
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where eAt = L−1[(sI − A)−1] and L−1[·] is the inverse Laplace transform operator. We can show 
that � � s −λ2 

s2+λ1s+λ2 s2+λ1s+λ2(sI − A)−1 = 1 s+λ1 
s2+λ1s+λ2 s2+λ1s+λ2 

√ 
Since λ1 > 2 λ2, therefore λ1

2 − 4λ2 > 0, the equation s2 + λ1s + λ2 = 0 has 2 real negative 
roots, i.e. p p

λ2 λ2−λ1 + − 4λ2 −λ1 − − 4λ2 
p1 = 1 , p1 = 1 

2 2 
It is easy to check that 0 > p1 > p2. We can calculate that � � 

At a11(t) a12(t)e = L−1[(sI − A)−1] = 
a21(t) a22(t) 

where 
1 λ1p1t p2t)a11(t) = (e + ep2t) − (ep1t − 2e 
2 p1 − p2 

and 
λ2 

a12(t) = − (ep1t − ep2t). 
p1 − p2 

Therefore 

x(t) = x1(t0)a11(t − t0) + x2(t0)a12(t − t0) 

1 λ1x1(t0) + λ2x2(t0)p1(t−t0) p2(t−t0)) − p1(t−t0) − ep2(t−t0))= x1(t0)(e + e (e 
2 p1 − p2 

Since p1 > p2, x1(t0) ≤ 0 and λ1x1(t0) + λ2x2(t0) > 0, we have that x(t) < 0, ∀t ≥ t0. 
Consequently, (63) holds for all t > t0. According to Lemma 8.1, x1(t) converges to 0 asymptoti-
cally. 

Theorem 8.1 shows that if d + µ ≥ vf ρ
?, then controller (56) forces x1 to converge to 0 asymptot-

ically. In the case that d + µ < vf ρ
?, the dynamics and the stability properties of the closed-loop 

system is shown in the following theorem. 

Theorem 8.2. Consider the system (52)(53) with controller (56), if d + µ < vf ρ
?, then ∀x1(0) ∈ 

[−ρ?, ρj − ρ?], x1(t) converges to d+µ − ρ? asymptotically. 
vf 

Proof. Since d + µ < vf ρ
?, then ∃η > 0, such that d + µ ≤ vf ρ

? − η. Similar to the case in 
Theorem 8.1, we only need to consider the case where x1(t0) ≤ ρL − ρ? and k(t0) = k2(t0). 
According to (52)(53), we have that 

ẋ1 ≤ d − q2 + µ = d + µ − (vf ρ
? + vf x1) 
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thus for all x1(t0) ≤ ρL − ρ? , x1(t) ≤ d+µ − ρ? , ∀t ≥ t0. Therefore 
vf Z t µ µ 

x2(t) = x2(t0) + x1(t)dτ − ≤ x2(t0) − − η(t − t0), t ≥ t0 
t0 

λ2 λ2 

which decreases to negative infnity as t increases. Therefore q1 saturates at d. 

ẋ 1 = d + µ − (vf ρ
? + vf x1) 

Thus x1 converges to d+µ − ρ? . 
vf 

Therefore, with the controller (56), if the sum of the upstream demand d and the disturbance is 
greater than or equal to the predetermined equilibrium fow, the density in the section will con-
verge to the equilibrium point ρ? . If the sum of the upstream demand d and the disturbance is 
less than the predetermined equilibrium fow, the density converges to d+µ , at which the steady 

vf 

state fow is d + µ, which is the maximum possible value. Note that the selection of ρL affects 
the distance from the switching point to the desired equilibrium point. According to the proof of 
Theorem 8.1, we can select ρL = ρ? which minimizes the distance while still guarantees the con-
vergence. In addition, since ρ(t) always converges to ρ? from the left side, ρ? can be arbitrarily 
close to Cd . 

vf 

8.2. Numerical Experiments 
In this section, we use numerical simulations to demonstrate the analytical results of the previ-
ous sections. The simulations are performed on a single-section road network, whose parameters 
are: C = 6500 veh/h, w = 20 mi/h, ρj = 425 veh/mi, vf = 65 mi/h, w̃ = 10 mi/h, ρ̃j = 
750 veh/mi, ρc = 100 veh/mi, d = 6000 veh/h, µ = 300 veh/h. We apply controller (56) to the 
perturbed single-section system with the following design constants: λ1 = 200, λ2 = 900, ρ? = 
ρL = 75 veh/mi, ρU = 79 veh/mi, µm = 350 veh/h, qs = 3200 veh/h. The initial condition 
ρ(0) = 120 veh/mi. 
Figure 51 shows the behavior of the density, fow rate and the VSL commands respectively. We 
can see that the density converges asymptotically to the predetermined value ρ? = 75 veh/mi. 
There is a difference of 100 veh/h between the steady state values of q1 and q2, since in steady 
state q1 − q2 + µ = 0. The outfow q2 starts at the value of 3500 veh/h, which is the dropped 
capacity of the bottleneck. Then suddenly jump to 4250 veh/h since the density decreases and 
becomes lower than the critical density Cd/vf = 80 veh/h, thus the capacity drop is removed. 
Then q2 decreases as ρ keeps decreasing until ρ = ρL . Then the PI controller takes over, and q2 

increases and converges to the steady state value eventually. 
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Figure 51: System Behavior of the Perturbed Closed-loop System 
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9 Conclusion 
In this report, based on the frst order cell transmission model, we conducted design, analyze and 
evaluate the performance of several integrated highway traffc fow control strategies in both 
macroscopic and microscopic simulations. We discovered that forced lane change at vicinity of 
the bottleneck is a major reason of the capacity drop phenomenon. We proposed a lane change 
controller which provides lane change recommendations to upstream vehicles in order to avoid 
the capacity drop. A feedback linearization variable speed limit controllers is designed to im-
prove the mobility, safety and environmental impact at highway bottleneck together with the lane 
change controller. The combined LC and feedback linearization VSL controller can theoretically 
guarantee the global exponential convergence to the desired equilibrium point at which maximum 
possible fow rate is achieved. Furthermore, the combined LC and VSL controller is extended to 
coordinate with ramp metering controllers. The coordinated VSL, RM and LC controller is able 
to improve system performance, maintain the queue length on ramps and keep the fairness be-
tween mainline and on-ramp fows. Microscopic simulations show consistent improvement under 
different traffc demand and scenarios. The proposed controller is compared to the widely used 
MPC control strategy. Both macroscopic and microscopic simulations show that the performance 
and robustness with respect to model parameter errors and measurement noise of our controller 
is better than that of the MPC controller. The open-loop stability properties of the modifed cell 
transmission traffc fow model (CTM) which takes the capacity drop phenomenon into consid-
eration under all possible traffc fow scenarios are investigated, which motivates the design of a 
VSL controller which is able to avoid the capacity drop, stabilize the system and maximize the 
fow rate at the bottleneck. The VSL controller is extended with integral action in order to reject 
system disturbance. 
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[76] A. Wächter and L. T. Biegler, “On the implementation of an interior-point flter line-search 
algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, 
no. 1, pp. 25–57, 2006. 

[77] J. Lebacque, “Two-phase bounded-acceleration traffc fow model: analytical solutions 
and applications,” Transportation Research Record: Journal of the Transportation Research 
Board, no. 1852, pp. 220–230, 2003. 

[78] C. Roncoli, M. Papageorgiou, and I. Papamichail, “Traffc fow optimisation in presence 
of vehicle automation and communication systems–Part I: A frst-order multi-lane model 
for motorway traffc,” Transportation Research Part C: Emerging Technologies, vol. 57, pp. 
241–259, 2015. 

93 

http://pems.dot.ca.gov


Integrated Traffc Flow Control in a Connected Network 

[79] A. Srivastava and W. Jin, “A lane changing cell transmission model for modeling capacity 
drop at lane drop bottlenecks,” in Transportation Research Board 95th Annual Meeting. 
TRB, 2016, pp. 16–5452. 

[80] C. F. Daganzo, “The cell transmission model: A dynamic representation of highway traffc 
consistent with the hydrodynamic theory,” Transportation Research Part B: Methodological, 
vol. 28, no. 4, pp. 269–287, 1994. 

[81] P. A. Ioannou and J. Sun, Robust adaptive control. Dover Publications, Mineola, New York, 
2012. 

Data Management Plan 
The data management plan of this research includes the disclosure of raw simulation data of the 
combined variable speed limit and lane change control (Section 3) and the Coordinated Variable 
Speed Limit, Ramp Metering and Lane Change Controller (Section 4). The simulations are per-
formend with PTV-VISSIM 5.30. 
For the simulations in Section 3, data is generated under the following traffc demand levels, sce-
narios, control modes and data types: 

• Demand levels: 

1. 6000 veh/hr 

2. 6500 veh/hr 

• Scenarios: 

1. scenario 1: incident lasts for 30 minutes 

2. scenario 2: incident lasts for 10 minutes 

3. scenario 3: incident lasts for 60 minutes (cropped to the frst 45 minutes of incidents 
for evaluation to demonstrate the case of long-term bottleneck). 

• Control Modes: 

1. no control 

2. combined VSL and LC control. 

• Data Types: 

1. vehicle densities 

2. fow rates 

3. VSL control commands 
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All data is generated from 10 rounds of Monte Carlo simulations, which are indexed from 0 to 9. 
For the simulations in Section 4, data is generated under one scenario and demand level which is 
described in Section 4.4, and different control modes and data types as listed below. 

• Control Modes: 

1. RM control only 

2. Coordinated VSL, LC and RM control 

• Data Types: 

1. vehicle densities 

2. fow rates 

3. VSL control commands 

4. RM control commands 

5. Ramp queue length 

All data is generated from 10 rounds of Monte Carlo simulations, which are indexed from 0 to 9. 
The units of data in each data type is listed in Table 9. 

Table 9: Data Units 

Data Type Units 
Vehicle density number of vehicles per mile 
Flow rate number of vehicles per 5 seconds 
VSL control commands miles per hour 
RM control commands number of vehicles per hr 
Ramp queue length number of vehicles 

A Parts of Proof of Theorem 6.1 

A.1. Case a), i.e. I ∈ Ω1 

Consider the Lyapunov function 
(ρ − d/vf )

2 

V (ρ) = ,
2 

then we have 
d d

V̇ (ρ) = (ρ − )ρ̇ = −(ρ − )(q2 − q1). 
vf vf 
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Using equation (33) and Fig. 31, we have that when 0 ≤ ρ ≤ Cd , q1 = d and q2 = vf ρ. Thus 
vf 

d 
q2 − q1 = vf (ρ − ) (67) 

vf 

d )2 Cd ρj − (1−�0)Cd dtherefore V̇ = −vf (ρ − , ∀ρ ∈ [0, ]. When Cd < ρ ≤ ˜ , ρ − > 0, q1 = d and 
vf vf vf w̃ vf 

q2 = (1 − �0)Cd. Thus 

(1 − �0)Cd − d 
q2 − q1 = (1 − �0)Cd − d ≥ (ρ − d/vf ) (68)

ρj − d/vf 

ρ−d/vfdue to (1 − �0)Cd − d > 0 and d/vf < ρ ≤ ρj , ∀ρ ∈ (Cd , ρj ], which implies 0 < ≤ 1. 
vf ρj −d/vf 

ρj − (1−�0)Cd ρj − (1−�0)CdTherefore V̇ ≤ − (1−�0)Cd−d (ρ− d )2 , ∀ρ ∈ (Cd , ≤ ˜ ]. When ˜ < ρ ≤ ρj − d ,
ρj −d/vf vf vf w̃ w̃ w 

ρ − d > 0, q1 = d and q2 = w̃(ρ̃j − ρ). Thus 
vf 

d d d 
q2 − q1 = w̃(ρ̃j − ρ) − d ≥ w̃[ρ̃j − (ρj − )] − d = w̃[ρ̃j − (ρj − )] − w[ρj − (ρj − )] 

w w w 

= w̃(ρ̃j − ρc) − w(ρj − ρc) + (w̃ − w)[ρc − (ρj − 
d 
)] 

w 

= C − C + (w̃ − w)[ρc − (ρj − 
d 
)] 

w 
(w̃ − w)[ρc − (ρj − d )]

≥ w (ρ − d/vf ),
ρj − d/vf 

(69) 
ρ−d/vf (w̃−w)[ρc−(ρj − d )]

wdue to 0 < ≤ 1, w̃ −w < 0 and ρc − (ρj − d ) < 0. Therefore, V̇ ≤ − (ρ −
ρj −d/vf w ρj −d/vf 

ρj − (1−�0)Cd dd/vf )
2 , ∀ρ ∈ (˜ , ρj − d ]. When ρj − d < ρ ≤ ρj , ρ − = w(ρj − ρ) and 

w̃ w w vf 
> 0, q1 

q2 = w̃(ρ̃j − ρ). Thus 

q2 − q1 = w̃(ρ̃j − ρ) − w(ρj − ρ) 

= w̃(ρ̃j − ρc) − w(ρj − ρc) + (w̃ − w)(ρc − ρ) 

≥ (w̃ − w)[ρc − (ρj − 
d 
)] (70) 

w 
(w̃ − w)[ρc − (ρj − 

w
d )]

≥ (ρ − d/vf ),
ρj − d/vf 

ρ−d/vf (w̃−w)[ρc−(ρj − d )]
wsince 0 < 

ρj −d/vf 
≤ 1, w̃ − w < 0 and ρc − (ρj − 

w
d ) < 0. Therefore V̇ ≤ − (ρ −

ρj −d/vf 

d/vf )
2 , ∀ρ ∈ (ρj − 

w
d , ρj ]. From (67) to (70), we can conclude that 

V̇ ≤ −α(ρ − 
d 
)2 , ∀ρ(0) ∈ [0, ρj ] (71) 

vf 
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(1−�0)Cd−d (w̃−w)[ρc−(ρj − d )]
wwhere α = min{vf , ρj −d/vf 

, } > 0, ∀ρ(0) ∈ [0, ρj ], which implies ex-
ρj −d/vf 

ponential stability of the equilibrium point ρe = d and exponential convergence of ρ(t) to d ,
vf vf 

∀ρ(0) ∈ [0, ρj ]. The rate of convergence of ρ to the equilibrium d is greater or equal to α and 
vf 

d )2can be shown by substituting for (ρ − = 2V in (71) and integrating both sides of the inequal-
vf 

ity. 

A.2. Case b), i.e. I ∈ Ω2 

From Fig. 32, the situation where ρ(0) ∈ (ρj − 
w
d , ρj ] is divided into two cases: 

• Case I: ρ(0) ∈ (ρj − d , ρ̃j − d ]. 
w w̃ 

• Case II: ρ(0) ∈ (ρ̃j − 
w
d 
˜ , ρ

j ]. 

In case I, q1 = w(ρj − ρ) and q2 = d as long as ρ ∈ (ρj − d , ρ̃j − d ], ∀t ≥ 0, which we need to 
w w̃ 

show. We have 
ρ̇ = q1 − q2 = −wρ + wρj − d, 

whose solution is 
−wt ρ(t) = (ρj − 

d 
) + [ρ(0) − (ρj − 

d 
)]e . 

w w 

Since 0 < ρj − d < ρ(0) ≤ ρ̃j − d and w > 0, it follows that ρ ∈ (ρj − d , ρ̃j − d ], ∀t ≥ 0 and 
w w̃ w w̃ 

ρ(t) converges exponentially fast to ρj − 
w
d according to the above equation. 

In case II, when ρ(0) ∈ (ρ̃j − 
w
d 
˜ , ρ

j ], it follows from Fig. 32 that q1 = w(ρj − ρ), q2 = w̃(ρ̃j − ρ) 
and 

ρ̇ = −(w − w̃)ρ + (w − w̃)ρc, 

as long as ρ(t) ∈ (ρ̃j − 
w
d 
˜ , ρ

j ], whose solution is 

ρ(t) = ρc + (ρ(0) − ρc)e −w0t ≤ (ρj − 
d 
) + (ρ(0) − ρc)e −w0t , 

w 

ρj − dwhere w0 = w − w̃ > 0 according to model (33). Since ρc < ˜ 
w̃ , it follows that ρ(t) 

will decrease exponentially to the value of ρ̃j − 
w
d 
˜ at which instant ρ̇ switches to case I which 

guarantees exponential convergence to ρj − 
w
d . The above equation implies that 

d |ρ(t) − (ρj − )| ≤ c0e −αt , 
w 

where c0 = ρ(0) − (ρj − d ) and α = min{w, w − w̃}. 
w 
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A.3. Case c), i.e. I ∈ Ω3 

Consider the Lyapunov function 
(ρ − ρe 

2)
2 

V (ρ) = ,
2 

= ρj − (1−�0)Cdwhere ρ2 
e . Then V̇ = −(ρ−ρe 

2)(q2 −q1). As shown before, when Cd < ρ ≤ ρj − d ,
w vf w 

we have ρ − ρe 
2 < 0 and 

(1 − �0)Cd − d 
q2 − q1 = (1 − �0)Cd − d ≤ (ρ − ρ2 

e), (72)
Cd/vf − ρe 

2 

(ρ−ρe 
2) ddue to 0 < < 1, ∀ρ ∈ (Cd , ρj − ] and (1 − �0)Cd − d < 0. Therefore V̇ ≤

Cd/vf −ρe vf w2 

− (1−�0)Cd−d ρj − (1−�0)Cd(ρ − ρe)2 . When ρj − d < ρ ≤ ˜ ,
Cd/vf −ρe 2 w w̃2 

(1 − �0)Cd 
q2 − q1 = (1 − �0)Cd − w(ρj − ρ) = w[ρ − (ρj − )] = w(ρ − ρe 

2) . (73) 
w 

ρj − (1−�0)CdTherefore V̇ = −w(ρ − ρe 
2)

2 . When ˜ 
w̃ < ρ ≤ ρj , we have ρ − ρe 

2 > 0 and 

q2 − q1 = w̃(ρ̃j − ρ) − w(ρj − ρ) = (w − w̃)(ρ − ρc) ≥ (w − w̃)(ρ − ρe 
2), (74) 

due to w − w̃ > 0 and ρ2 
e > ρc. Therefore, V̇ ≤ −(w − w̃)(ρ − ρ2 

e)2 . From (72) to (74), we 
conclude that ∀ρ ∈ (Cd , ρj ],

vf 

V̇ ≤ −α(ρ − ρe 
2)

2 , 

where α = min{d−(1−�0)Cd , w, (w − w̃)} > 0, ∀ρ(0) ∈ (Cd , ρj ] which implies exponential 
ρe−Cd/vf vf2 

ρj − (1−�0)Cdstability of the equilibrium point ρe = and exponential convergence of ρ(t) to ρe 
2 w 2, 

∀ρ(0) ∈ (Cd , ρj ]. 
vf 

A.4. Case d), i.e. I ∈ Ω4 

Consider the Lyapunov function 
(ρ − ρe)2 

V (ρ) = ,
2 

= ρj − (1−�0)Cdwhere ρe . Thus 
w 

V̇ = −(ρ − ρe)(q2 − q1). 
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From Fig. 34, it is clear that ∀ρ ∈ [0, Cd ], ρ − ρe < 0 and 
vf 

d − Cd 
q2 − q1 ≤ Cd − d ≤ (ρ − ρe),

ρe 

therefore, 
d − Cd Cd

V̇ ≤ − 
ρe 

(ρ − ρe)2 , ∀ρ ∈ [0, ]. 
vf 

Similar to the case I ∈ Ω3, we have ∀ρ ∈ (Cd , ρj ],
vf 

d − (1 − �0)Cd
V̇ ≤ − min{ , w, (w − w̃)}(ρ − ρe)2 . 

ρe − Cd/vf 

Therefore, ∀ρ ∈ [0, ρj ], the time derivative of the Lyapunov function satisfes 

V̇ ≤ −α(ρ − ρe)2 , 

d−(1−�0)Cdwhere α = min{d−Cd , , w, (w − w̃)} > 0, which implies exponential convergence to 
ρe ρe−Cd/vf 

the equilibrium point ρe , ∀ρ(0) ∈ [0, ρj ]. 

A.5. Case e), i.e. I ∈ Ω5 

Consider the Lyapunov function 

(ρ − min{d, C}/vf )
2 

V (ρ) = . 
2 

Then if d < C, V̇ = −(ρ − d/vf )(q2 − q1). According to equation (33) and Fig. 35a, when 
0 ≤ ρ ≤ ρc, we have that q1 = d, and q2 = vf ρ. Thus 

q2 − q1 = vf (ρ − d/vf ). (75) 

Therefore V̇ = −vf (ρ − d/vf )
2 . When ρc < ρ ≤ ρj − 

w
d , we have ρ − d/vf > 0, q1 = d and 

q2 = w̃(ρ̃j − ρ). Using equation (69), we have 

d (w̃ − w)[ρc − (ρj − 
w
d )] 

q2 − q1 = w̃(ρ̃j − ρ) − d ≥ w̃[ρ̃j − (ρj − )] − d ≥ (ρ − d/vf ). 
w ρj − d/vf 

(76) 
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(w̃−w)[ρc−(ρj − d )]
wTherefore V̇ ≤ − (ρ − d/vf )

2 . When ρj − d < ρ ≤ ρj , we have ρ − d/vf > 0,
ρj −d/vf w 

q1 = w(ρj − ρ) and q2 = w̃(ρ̃j − ρ), which together with equation (70) gives 

(w̃ − w)[ρc − (ρj − 
w
d )] 

q2 − q1 = w̃(ρ̃j − ρ) − w(ρj − ρ) ≥ (ρ − d/vf ), (77)
ρj − d/vf 

(w̃−w)[ρc−(ρj − d )]
wTherefore V̇ ≤ − (ρ − d/vf )

2 . From (75) - (77), we conclude that ∀ρ ∈ [0, ρj ],
ρj −d/vf 

V̇ ≤ −α(ρ − d/vf )
2 , 

(w̃−w)[ρc−(ρj − d )]
wwhere α = min{vf , } > 0, which guarantees exponential stability of the equilib-

ρj −d/vf 

rium point ρe = d/vf and exponential convergence of ρ(t) to ρe , ∀ρ(0) ∈ [0, ρj ]. 
If d ≥ C, ∀ρ ∈ [0, ρc], q1 = C, q2 = vf ρ, and ∀ρ ∈ (ρc, ρj ], q1 = w(ρj − ρ), q2 = w̃(ρ̃j − ρ). 
Therefore ( 

˙ − vf (ρ − ρc)
2 , if ρ ∈ [0, ρc]

V = , 
− (w − w̃)(ρ − ρc)

2 , if ρ ∈ (ρc, ρ
j] 

which implies that V̇ ≤ − min{vf , (w − w̃)}(ρ − ρc)2 . The properties of V and V̇ imply expo-
nential stability of the equilibrium point ρe = ρc = C and exponential convergence of ρ(t) to ρe ,

vf 

∀ρ(0) ∈ [0, ρj], due to w − w̃ > 0. 

B Proof of Theorem 6.2 
For the proof of Theorem 6.2, we use the following two lemmas: Lemma B.1 gives the region of 
ρe within the set S. For a set A ⊂ <N and a point x0 ∈ <N , the distance between x0 and A is 
defned as: 

d(x0, A) = inf kx − x0k. 
x∈A 

Then we have the following lemma. 

Lemma B.1. Let ρe be an equilibrium state of system (34), then we have the following results: 

4S 
{ρ|min{d,C} ≤ ρj − (1−�0)Cda) If Cd < C, i.e. I ∈ Ωi, then ρe ∈ SI , where SI = 

vf 
≤ ρi w , i = 

i=1 

1, 2, ..., N} ⊂ S. Furthermore, ∀ρ(0) ∈ S, d(ρ(t), SI ) converges to 0 exponentially fast. 

= {ρ|min{d,C}SI SIb) If Cd ≥ C, i.e. I ∈ Ω5, then ρe ∈ ¯ , where ¯ ≤ ρi ≤ ρc, i = 1, 2, ..., N} ⊂ S. 
vf 

¯Furthermore, ∀ρ(0) ∈ S, d(ρ(t), SI ) converges to 0 exponentially fast. 

Proof of Lemma B.1: 
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4S min{d,C}a) For I ∈ Ωi, we frst show that ρei ≥ , for i = 1, 2, ..., N . Assume that 0 ≤ ρe 
1 < 

vf 
i=1 

min{d,C} min{d,C}, then w(ρj − ρe 
1) ≥ C due to ρe 

1 < ≤ ρc. Therefore the corresponding equilib-
vf vf 

rium fow rate 
e q = min{d, C, w(ρj − ρe)} = min{d, C},1 1 

e q = min{vf ρ1 
e , w̃(ρ̃j − ρe 

1), C, w(ρ
j − ρ2 

e)} ≤ vf ρ
e 

2 1, 

which implies that 

min{d, C}
ρ̇1 = q1 

e − q2 
e ≥ min{d, C} − vf ρ

e 
1 > 0, as ρe 

1 < , 
vf 

min{d,C}which violates the equilibrium condition (35), hence ρe 
1 ≥ . For any i = 1, 2, .., N − 1,

vf 
min{d,C} min{d,C}assume ρei ≥ and check the property of ρei+1. If 0 ≤ ρei+1 < 

vf 
, we have vf ρ

e
i+1 < 

vf 

min{d, C} < C < w(ρj − ρe ). Thusi+1 

e q = min{vf ρi
e , w̃(ρ̃j − ρe), C, w(ρj − ρe )} = min{vf ρi

e , w̃(ρ̃j − ρe)},i+1 i i+1 i 

e q = min{vf ρ
e w(ρ̃j − ρe ), C, w(ρj − ρe )} ≤ vf ρi

e 
+1 < min{d, C}.i+2 i+1, ˜ i+1 i+2 

eIf qi+1 = w̃(ρ̃j − ρei ), then w̃(ρ̃j − ρei ) ≤ vf ρi
e, which implies ρi

e ≥ ρc. Since ρi
e is the equilibrium 

e edensity in section i, we have qi = qi+1, and 

e e w(ρj − ρe) ≥ q = q = w̃(ρ̃j − ρe),i i i+1 i 

e ewhich implies ρei ≤ ρc. Thus ρei = ρc and qi = qi+1 = w̃(ρ̃j − ρc) = C ≥ min{d, C} > 
e e e e min{d,C}qi+2. If qi+1 = vf ρ

e
i , then qi+1 ≥ min{d, C} > qi+2 due to ρei ≥ . Therefore, for all 

vf 
e epossible qi+1 = min{vf ρ

e
i , w̃(ρ̃

j − ρe)}, we have q > q , which violates the equilibrium i i+1 i+2 
min{d,C}condition (35). Therefore, the assumption 0 ≤ ρei+1 < is invalid, which implies that 

vf 

≥ min{d,C}ρei+1 . By mathematical induction, we know that 
vf 

min{d, C}
ρei ≥ , i = 1, 2, ..., N. (78) 

vf 

≤ ρj − (1−�0)CdThen we show that ρei w , for i = 1, 2, ..., N . Assume that ρj − (1−�
w 
0)Cd < ρN

e ≤ ρj , 
then 

e q = min{(1 − �0)Cd, w̃(ρ̃
j − ρe )},N+1 N 

e q = min{vf ρ
e w(ρ̃j − ρe ), C, w(ρj − ρe )} ≤ w(ρj − ρe ).N N−1, ˜ N−1 N N 

> ρj − (1−�0)CdSince ρe > ρc, we have w(ρj − ρe ) < (1 − �0)Cd and w(ρj − ρe ) < w̃(ρ̃j − ρe ).N w N N N 
e eTherefore q ≤ w(ρj − ρe ) < q , which contradicts the the equilibrium condition (35). Thus N N N+1 

≤ ρj − (1−�0)Cdρe .N w 
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≤ ρj − (1−�0)CdAssume ρei w , for any i = 2, 3, ..., N , we check the property of ρi
e 
−1. If ρ

j − 
(1−�0)Cd < ρe ≤ ρj , then w̃(ρ̃j − ρe ) < C < vf ρi

e 
−1 as ρi

e 
−1 > ρc. Therefore 

w i−1 i−1 

e q = min{vf ρ
e w(ρ̃j − ρe ), C, w(ρj − ρe)} = min{w̃(ρ̃j − ρe ), w(ρj − ρe)},i i−1, ˜ i−1 i i−1 i 

e q = min{vf ρ
e w(ρ̃j − ρi

e 
−2), C, w(ρ

j − ρei−1)} ≤ w(ρj − ρe 
i−1 i−2, ˜ i−1). 

≤ ρj − (1−�0)CdSince ρe < ρi
e 
−1, we have w(ρj − ρe ) < w̃(ρ̃j − ρe ) and w(ρj − ρe ) <i w i−1 i−1 i−1 
e e(1−�0)Cd ≤ w(ρj −ρei ). Thus qi−1 < qi , which violates the equilibrium condition (35). Therefore 

≤ ρj − (1−�0)Cdρei−1 w . By mathematical induction, we have 

(1 − �0)Cd
ρei ≤ ρj − , i = 1, 2, ..., N. (79) 

w 

Combining the two inequalities (78) and (79), we can conclude 

min{d, C} (1 − �0)Cd≤ ρei ≤ ρj − , i = 1, 2, ..., N. 
vf w 

To show that d(ρ(t), SI ) converges to 0 exponentially fast ∀ρ(0) ∈ S, it is equivalent to show that 
∀δ > 0, ∃T > 0, such that ∀t > T 

min{d, C} (1 − �0)Cd− δ < ρi(t) < ρj − + δ, i = 1, 2, ..., N (80) 
vf w 

and d(ρ(t), SI ) is bounded from above by a decaying exponential function. 
First we show the left half of inequality (80). Since q1 = min{d, C, w(ρj − ρ1)} and q2 ≤ vf ρ1, 
we have 

ρ̇1 = q1 − q2 ≥ min{d, C, w(ρj − ρ1)} − vf ρ1. (81) 
min{d,C}If ∃t0 ≥ 0, such that ρ1(t0) ≥ , then for all t ≥ t0 we have the following result: since 

vf 
min{d,C}ρ1(t) is uniformly continuous, if ρ1(t) keeps decreasing and ρ1(t1) = for some t1 ≥ t0,vf 

then from (81) we have ρ̇1(t1) ≥ 0, which implies that ρ1(t) will no longer decrease and ρ1(t) ≥ 
min{d,C} , ∀t ≥ t0. Therefore ∀δ1 > 0 and ∀t ≥ t0, ρ1(t) ≥ min{d,C} − δ1. vf vf 

min{d,C} min{d,C}If ∀t ≥ 0, ρ1(t) < , then in the region ρ1(t) < , we have 
vf vf 

min{d, C}
ρ̇1(t) ≥ min{d, C} − vf ρ1 = −vf (ρ1 − ). (82) 

vf 

By Lemma 3.2.4 in [81], we have 

min{d, C} min{d, C}
ρ1(t) ≥ e −vf t[ρ1(0) − ] + , ∀t ≥ 0. (83) 

vf vf 
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The right side of (83) converges to min{d,C} exponentially fast, therefore ∀δ1 > 0, ∃T1 > 0, such 
vf 

that ∀t > T1, ρ1(t) ≥ min{d,C} − δ1. 
vf 

For i = 1, 2, ..., N − 1, we assume ρi ≥ min{d,C} − δi, ∀t > 0, where δi > 0, then we examine the 
vf 

dynamics of ρi+1. We have 

ρ̇i+1 = qi+1 − qi+2 ≥ min{vf ρi, w̃(ρ̃
j − ρi), C, w(ρ

j − ρi+1)} − vf ρi+1. 

Since ρi ≥ min{d,C} − δi, we have vf ρi ≥ min{d, C} − vf δi, therefore 
vf 

ρ̇i+1 ≥ min{min{d, C} − vf δi, w̃(ρ̃
j − ρi), w(ρ

j − ρi+1)} − vf ρi+1. (84) 

min{d,C}Similar to (81), we can show that if ∃t0 ≥ 0, such that ρi+1(t) ≥ − δi, then ρi+1(t) ≥ 
vf 

min{d,C} min{d,C}− δi, ∀t ≥ t0, that is, ∀δi+1 > δi and ∀t ≥ t0, ρi(t) > − δi+1. 
vf vf 

min{d,C} min{d,C}If ρi+1(t) < − δi, ∀t ≥ 0, then in the region ρi+1(t) < − δi, we have 
vf vf 

min{d, C}
ρ̇i+1(t) ≥ min{d, C} − vf δi − vf ρi+1 = −vf (ρi+1 − + δi). 

vf 

By Lemma 3.2.4 in [81], we have 

min{d, C} min{d, C}
ρi+1(t) ≥ e −vf t[ρi+1(0) − + δi] + − δi, ∀t ≥ 0. (85) 

vf vf 

Similar to (83), the right hand side of equation (85) converges exponentially fast to min{d,C} − δi. vf 
min{d,C}Therefore, ∀δi+1 > δi, ∃Ti+1 > 0, such that ∀t > Ti+1, ρi(t) > − δi+1. By mathematical 

vf Piinduction, we can conclude that for i = 1, 2, ..., N , ∀δi > 0, ∃Ti > 0, such that ∀t > j=1 Tj , 
ρi(t) ≥ min{d,C} − δi. If we take δN < δ, T1 + T2 + ... + TN < T , then the left side of inequality 

vf 

(80) holds. 
Next we prove the right half of the inequality (80). Since qN+1 = min{vf ρN , w̃(ρ̃

j − ρN ), (1 − 
�(ρN ))Cd} and qN < min{C, w(ρj − ρN )}, we have 

ρ̇N = qN − qN+1 ≤ min{C, w(ρj − ρN )} − min{vf ρN , w̃(ρ̃
j − ρN ), (1 − �(ρN ))Cd}. 

Similar to (81), we can show that if ∃t0 ≥ 0, such that ρN (t0) ≤ ρj − (1−�
w 
0)Cd , then ρN (t0) ≤ 

ρj − (1−�0)Cd 

w , ∀t ≥ t0, that is, ∀0 < δN < δ, and ∀t ≥ 0, ρN (t) ≤ ρj − (1−�
w 
0)Cd + δN . 

> ρj − (1−�0)CdIf ρN (t) > ρj − (1−�
w 
0)Cd , ∀t ≥ 0, then in the region ρN w , we have 

(1 − �0)Cd
ρ̇N ≤ (w̃ − w)(ρN − (ρj − )). 

w 

103 



Integrated Traffc Flow Control in a Connected Network 

By Lemma 3.2.4 in [81], we have 

(1 − �0)Cd (1 − �0)Cd
ρN (t) ≤ e(w̃−w)t[ρN (0) − (ρj − )] + (ρj − ), ∀t ≥ 0. (86) 

w w 

Since w̃ − w < 0, the right side of (86) converges to ρj − (1−�
w 
0)Cd exponentially fast. Therefore, 

∀0 < δN < δ, ∃TN > 0, such that ∀t > TN , ρN (t) ≤ ρj − (1−�
w 
0)Cd + δN . 

≤ ρj − (1−�0)CdFor i = 1, ..., N − 1, we assume ρi+1 w + δi+1, ∀t > 0, where δi+1 > 0, then we 
check the dynamics of ρi. We have 

ρ̇i = qi − qi+1 ≤ min{C, w(ρj − ρi)} − min{vf ρi, w̃(ρ̃
j − ρi), C, w(ρ

j − ρi+1)}. 

Since ρi+1 ≤ ρj − (1−�
w 
0)Cd + δi+1, we have w(ρj − ρi+1) ≥ (1 − �0)Cd − wδi+1. Thus 

ρ̇i ≤ min{C, w(ρj − ρi)} − min{vf ρi, w̃(ρ̃
j − ρi), (1 − �0)Cd − wδi+1}. 

Similar to (81), we can show that if ∃t0 ≥ 0, such that ρi(t0) ≤ ρj − (1−�
w 
0)Cd + δi+1, then 

ρi(t0) ≤ ρj − (1−�0)Cd 

w + δi+1, ∀t ≥ t0, that is, ∀δi > δi+1, and ∀t ≥ 0, ρi(t) ≤ ρj − (1−�
w 
0)Cd + δi. 

If ρi(t0) > ρj − (1−�
w 
0)Cd + δi+1, ∀t ≥ 0, then in the region ρi > ρj − (1−�

w 
0)Cd + δi+1, we have 

(1 − �0)Cd
ρ̇i ≤ ( ̃w − w)(ρN − (ρj − ) − δi+1). 

w 

By Lemma 3.2.4 in [81], we have 

( ˜ρi(t) ≤ e w−w)t[ρi(0) − (ρj − 
(1 − �0)Cd 

+ δi+1)] + (ρj − 
(1 − �0)Cd 

+ δi+1), ∀t ≥ 0. (87) 
w w 

Similar to (86), the right hand side of equation (87) converges exponentially fast to ρj − (1−�
w 
0)Cd + 

δi+1. Therefore, ∀δi > δi+1, ∃Ti > 0, such that ∀t > Ti, ρi(t) ≤ ρj − (1−�
w 
0)Cd + δi. 

By mathematical induction, we can conclude that for i = 1, 2, ..., N , ∀δi > 0, ∃Ti > 0, such that Pi Tj , ρi(t) ≤ ρj − (1−�0)Cd∀t > + δi. If we take δ1 < δ, T1 + T2 + ... + TN < T , then the j=1 w 

right side of inequality (80) holds. Therefore, d(ρ(t), SI ) converges to 0 exponentially fast for all 
ρ(0) in the feasible set S. 
b) Part b) of Lemma B.1 can be proved in a similar manner. 
Specifcally, when I ∈ Ω2, the equilibrium points of system (34) satisfy the properties given by 
the following lemma. 

Lemma B.2. Let I ∈ Ω2. If ρe is an equilibrium state of system (34), then the corresponding 
e e eequilibrium fow rate is q = q = ... = q = d = (1 − �0)Cd. Furthermore, ρe has the 1 2 N+1 

following properties: 

a) For i = 1, 2, ..., N − 1, if d < ρe ≤ ρj − d , then ρe = ρj − d , for all i < k ≤ N . 
vf i w k w 

b) For i = 2, 3, ..., N , if d ≤ ρe < ρj − d , then ρe = d , for all 1 ≤ k < i. 
vf i w k vf 
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Proof of Lemma B.2: 
Assume ρe is an equilibrium state of system (34), then using Lemma B.1, we have d 

vf 
≤ ρe 

i ≤ 

ρj − (1−�0)Cd 

w = ρj − d , i = 1, 2, ..., N , therefore 
w 

e q1 = min{d, C, w(ρj − ρe 
1)} ≤ d, 

e qN+1 = min{vf ρ
e ρj − ρe 
N , w̃(˜ N ), (1 − �(ρe 

N ))Cd} ≥ d. 
e eUsing the equilibrium condition (35), we have that the equilibrium fow q1 = qN +1 = d. There-

efore qi = d, for i = 1, 2, ..., N + 1. 
For any i = 1, 2, ..., N − 1, if 

v
d 
f 

< ρei ≤ ρj − 
w
d , we have vf ρ

e
i > d and w̃(ρ̃j − ρei ) ≥ 

w̃[ρ̃j − (ρj − d/w)] > w[ρj − (ρj − d/w)] = d, therefore 

ed = qi+1 = min{vf ρ
e
i , w̃(ρ̃

j − ρi
e), C, w(ρj − ρei+1)} = w(ρj − ρi

e 
+1), 

which gives that ρe = ρj − d/w. By mathematical induction, ρe = ρj − d , for all i < k ≤ N .i+1 k w 
d ≤ ρe < ρj − dFor any i = 2, 3, ..., N , if 
vf i w , we have that w(ρj − ρei ) > d, therefore 

ed = q = min{vf ρ
e w(ρ̃j − ρe ), C, w(ρj − ρe)} = min{vf ρ

e w(ρ̃j − ρe )}.i i−1, ˜ i−1 i i−1, ˜ i−1 

e eIf qi = w̃(ρ̃j − ρi
e 
−1) = d, then qi−1 ≤ w(ρj − ρi

e 
−1) < w̃(ρ̃j − ρei−1) < d, which contradicts the 

e e d dfact that q = d, therefore q = vf ρ
e = d, ρe = . By mathematical induction, ρk = , for i−1 i i−1 i−1 vf vf 

all 1 ≤ k < i. 
Using the above two lemmas the proof of Theorem 6.2 is completed as follows: 
Proof of Theorem 6.2: 

4S 
From the part a) of Lemma B.1, we know that for I ∈ Ωi if ρe is an equilibrium state of sys-

i=1 

tem (34), then ρe ∈ SI and d(ρ(t), SI ) converges to 0 exponentially fast, ∀ρ(0) ∈ S. Therefore, 
we only need to fnd all equilibrium states of system (34) in SI and analyze the dynamics of ρ(t) 
for all ρ(0) ∈ Sδ

I , where 

min{d, C} (1 − �0)Cd
SI = {ρ| − δ ≤ ρi ≤ ρj − + δ, i = 1, 2, ..., N}δ vf w 

and δ > 0 can be arbitrarily small. 
From the part b) of Lemma B.1, we know that when I ∈ Ω5, we only need to fnd all equilib-
rium states of system (34) in the set S̄I and analyze the dynamics of ρ(t) for all ρ(0) in the set 
S̄δ
I , where 

min{d, C}
S̄I = {ρ| − δ ≤ ρi ≤ ρc + δ, i = 1, 2, ..., N}.δ vf 

Now we prove the statements of Theorem 6.2 from a) to e) respectively. 

≤ ρj − (1−�0)Cda) When I ∈ Ω1, d < (1 − �0)Cd. By Lemma B.1, we have that min 
v
{ 

f 

d,C} ≤ ρe
w ,i 
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etherefore w(ρj − ρe) ≥ (1 − �0)Cd > d, i = 1, 2, ..., N . Thus q = min{d, C, w(ρj − ρe)} = d.i 1 1 

Using the equilibrium condition (35), we have 

qi
e = d, for i = 1, 2, ..., N + 1 

eNow we show that ρe = d/vf , for i = 1, 2, ..., N . For i = 1, 2, ..., N −1, q = min{vf ρ
e
i , w̃(ρ̃

j −i i+1 

≤ ρj − (1−�0)Cdρe ≤ ρe 
i ), C, w(ρ

j − ρei+1)}. If ρc , we have i w 

w(ρj − ρei+1) ≥ (1 − �0)Cd > d, 

vf ρi
e ≥ C ≥ w̃(ρ̃j − ρi

e) ≥ w(ρj − ρei ) > (1 − �0)Cd > d, 

e ≤ ρe ≤ ρj − (1−�0)Cdwhich implies that qi+1 > d, therefore the assumption ρc i w is invalid. Hence 
d/vf ≤ ρi

e < ρc, which gives that w̃(ρ̃j − ρi
e) > C > vf ρi

e, thus 

e q = min{vf ρ
e
i , w(ρ

j − ρe )}.i+1 i+1 

≤ ρj − (1−�0)CdBy Lemma B.1, we have ρe , thus w(ρj − ρe ) ≥ (1 − �0)Cd > d. Solvingi+1 w i+1 
ethe equation q = d gives the unique equilibrium density ρe = d/vf . Therefore, we have i+1 i 

ρj − ρeρei = d/vf , i = 1, ..., N − 1. For i = N , we have qe = min{vf ρ
e
N , w̃(˜ ), (1 − �(ρeN ))Cd}.N+1 N 

≤ ρj − (1−�0)Cd eIf Cd/vf < ρe , we have q = (1 − �0)Cd > d, therefore the assumption N w N +1 

≤ ρj − (1−�0)CdCd/vf < ρeN w is invalid, which together with Lemma B.1 implies that d/vf ≤ 
ρe e e≤ Cd/vf . Therefore q = vf ρN

e . Solving the equation q = d gives a unique solution N N+1 N+1 

ρeN = d/vf . Therefore, the point d × 1 is the unique equilibrium state of system (34) when 
vf 

I ∈ Ω1. 
Using Lemma B.1, we have that for all ρ(0) ∈ Sδ

I , d/vf −δ < ρi(t) < ρj −(1−�0)Cd/w+δ, ∀t ≥ 
0, δ > 0. Therefore 

w(ρj − ρi) > w[ρj − (ρj − (1 − �0)Cd/w + δ)] = (1 − �0)Cd − wδ 

and 

w̃(ρ̃j − ρi) > w̃[ρ̃j − (ρj − (1 − �0)Cd/w + δ)] > w[ρj − (ρj − (1 − �0)Cd/w + δ)] 

= (1 − �0)Cd − wδ, 

for i = 1, 2, ..., N . Since (1 − �0)Cd > d, taking δ to be suffciently small, we have (1 − �0)Cd − 
wδ > d. Therefore q1 = min{d, C, w(ρj − ρ1)} = d and 

ρ̇1 = q1 − q2 = d − min{vf ρ1, w̃(ρ̃
j − ρ1), C, w(ρ

j − ρ2)}. (88) 
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Combine (34) and (88), we can show that ⎧ 
d d d 

= −vf (ρ1 − ) if − δ < ρ1 < 
vf vf vf⎪⎨ d 

ρ̇1 = 0 if ρ1 = , 
vf 

d d⎪⎩ ≤ −α(ρ1 − ) if < ρ1 < ρj − (1 − �0)Cd/w + δ 
vf vf 

(1−�0)Cd−wδ−dwhere α = min{vf , } > 0, which implies that for all ρ(0) ∈ Sδ
I , ρ1(t) converges to

ρj −d/vf 

d/vf exponentially fast. 
Based on the convergence of ρ1, we can show that ρ2 also converges to d/vf exponentially fast, 
followed by ρ3 through ρN . Therefore, ∀ρ(0) ∈ S, ρ(t) converges to d × 1 exponentially fast. 

vf 

b)When I ∈ Ω2, d = (1 − �0)Cd. Using Lemma B.2, we have that the equilibrium fow rate 
e Cd e d qi = d = (1 − �0)Cd, for i = 1, 2, ..., N + 1. If 0 ≤ ρeN ≤ , then qN+1 = d gives ρeN = . 

vf vf 

By part b) of Lemma B.2, we have ρei = d , i = 1, 2, ..., N − 1. Therefore ρe = d/vf × 1 is 
vf 

a potential equilibrium point of system (34). Substituting ρe = d/vf × 1 into equation (34), we 
ehave qi = d, for i = 1, 2, ..., N + 1. Therefore, ρe = d/vf × 1 is the only equilibrium state in the 

≤ Cdregion 0 ≤ ρeN . 
vf 

If ρe ∈ (Cd , ρj − d ), according to Lemma B.2, we have that ρe = ... = ρe = d . SubstitutingN w 1 N−1vf vf 
d Cd eany ρe ∈ {ρ|ρ1 = ... = ρN −1 = 
vf 
, 
vf 

< ρN < ρj − 
w
d } into equation (34), we have qi = d, 

for i = 1, 2, ..., N + 1. Therefore all ρe ∈ {ρ|ρ1 = ... = ρN−1 = 
v
d 
f 
, C
vf
d < ρN < ρj − 

w
d } are 

equilibrium states of system (34). 
If ρeN = ρj − 

w
d , we fnd all the equilibrium states of the system (34) by considering the following 

two cases: 
Case I: for all i = 1, 2, .., N − 1, ρei = ρj − 

w
d ; 

Case II: there exists i ∈ {1, 2, ..., N − 1}, d/vf ≤ ρe < ρj − d and ρe = ρj − d .i w i+1 w 
Case I contains only one point, that is, ρe = (ρj − 

w
d ) × 1. Substituting this density state into 

eequation (34), we have qi = d, for i = 1, 2, ..., N + 1. Therefore (ρj − 
w
d ) × 1 is an equilibrium 

state of system (34). 
ρe ρj − dFor case II, it is clear from Lemma B.2 that ρe 

1 = ...ρi
e 
−1 = d/vf , ρ

e
i+1 = ... = N = 

w . 
Taking i = 1, 2, ..., N − 1, we have that all potential equilibrium points of system (34) in case II 

NS−1 
dare in the set {ρ| d ≤ ρi < ρj − 

w
d , ρk = , 1 ≤ k < i, ρr = ρj − d , i < r ≤ N}. Substituting

vf vf w 
i=1 

eany point in this set into equation (34), we have qi = d, for i = 1, 2, ..., N + 1. Therefore all 
NS−1 

< ρj − d ρj − dρe ∈ {ρ| d ≤ ρi , ρk = d , 1 ≤ k < i, ρr = , i < r ≤ N} are equilibrium
vf w vf w 

i=1 
states of system (34). 
To summarize, when I ∈ Ω2, system (34) has an isolated equilibrium state d × 1 and an equilib-

vf 
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rium manifold 

d d Cd d 
Se = {(ρj − ) × 1} ∪ {ρ|ρi = , i = 1, 2, ..., N − 1, < ρN < ρj − }

w vf vf w 

d d d d ∪ [ 
N[−1 

{ρ| ≤ ρi < ρj − , ρk = , 1 ≤ k < i, ρr = ρj − , i < r ≤ N}]. 
vf w vf w 

i=1 

We now prove the rest of part b) as follows: frst we show that for all ρ(0) in the feasible space S, 
ρ(t) converges to one equilibrium state in S̄e, where S̄e = Se∪{ d ×1}. Then we show that d ×1 

vf vf 

is locally exponentially stable, and that every ρe ∈ Se is stable in the sense of Lyapunov, i.e. 
∀µ > 0, ∃η > 0, such that ∀ρ(0) that satisfy kρ(0) − ρek < η, we have kρ(t) − ρek ≤ µ, ∀t > 0. 
Furthermore, ρ(t) converges to some ρ̄e ∈ Se that satisfes kρ̄e − ρek < µ. 
For all ρ(0) ∈ SI , by letting δ = 0 in the proof of Lemma B.1, we can show ρ(t) ∈ SI , ∀t ≥ 0. 
From equation (34), we know that ∀ρ ∈ SI , q1 = d and qi ≥ d, i = 2, 3, ..., N . Therefore, 

kX 
ρ̇i = q1 − qk ≤ 0, k = 1, 2, ..., N. 

i=1 PkThus i=1 ρi is monotonically decreasing but bounded from below which implies that it con-
verges to a limit. Therefore, we have ρ = [ρ1, ρ2, ..., ρN ]

T converges to a constant vector ρe . From 
equation (34) we know that ρ̇ is a piecewise uniformly continuous function of ρ, therefore, as ρ 
converges to a constant ρe , ρ̇ also converges to a constant, which has to be 0 (otherwise kρk goes 

S̄eto infnity). Therefore ρe is a equilibrium point of system (34) by defnition. Thus ρe ∈ . From 
part a) of Lemma B.1, for all ρ(0) ∈ S, d(ρ(t), SI ) converges to 0 exponentially fast. Therefore 

¯∀ρ(0) ∈ S, ρ(t) converges to a equilibrium point ρe ∈ Se . 
Next we show that the equilibrium state ρe = d × 1 is exponentially stable, and that every ρe ∈ 

vf 

Se is stable in the sense of Lyapunov. 
(1) When ρe = d × 1, then for all ρ(0) ∈ {ρ|0 ≤ ρi ≤ Cd/vf , i = 1, 2, ..., N}, qi ≤ Cdvf 

and qi+1 = vf ρi, for i = 1, 2, ..., N . Thus ρ̇i = qi − qi+1 ≤ Cd − vf ρi, which implies that 
ρi(t) ≤ Cd/vf , ∀t ≥ 0. Therefore, 

ρ̇1 = d − vf ρ1, 

ρ̇i = vf ρi−1 − vf ρi, i = 2, 3, ..., N, 

which can be written in the compact form as 

d 
ρ̇ = A(ρ − × 1) 

vf 
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where ⎤⎡ 
−vf 

vf −vf 
A = 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ .. .. .. . 
vf −vf 

Since vf > 0, we have that A is Hurwitz. Therefore ρ(t) converges to d × 1 exponentially fast. 
vf 

ρe is in the interior of the set {ρ|0 ≤ ρi ≤ Cd/vf , i = 1, 2, ..., N}, thus we can always fnd a 
η > 0, such that {ρ |kρ − ρek < η } ⊂ {ρ|0 ≤ ρi ≤ Cd/vf , i = 1, 2, ..., N}. Therefore, ∀ρ(0) ∈ 
{ρ |kρ − ρek < η }, ρ(t) converges to ρe exponentially fast, which implies that ρe = d × 1 is 

vf 

exponentially stable. 
(2) When ρe = (ρj − 

w
d ) × 1, ∀ρ(0) that satisfy kρ(0) − ρek < η, with η > 0 suffciently small, 

equation (34) gives the fow rates as follows: q1 = min{d, w(ρj − ρ1)}, qi = w(ρj − ρi), for i = 
2, ..., N , and qN+1 = (1 − �0)Cd = d. Therefore, 

ρ̇1 = min{d, w(ρj − ρ1)} − w(ρj − ρ2), 

ρ̇i = w(ρj − ρi) − w(ρj − ρi+1), i = 2, ..., N − 1, 

ρ̇N = w(ρj − ρN ) − d. 

Let ei = ρi − ρi
e and ē = [e2, e3, ..., eN ]

T , then we have e = [e1, ē
T ]T , where ( 

⎡ 

we2, e1 ≤ 0 
ė1 = (89)

− we1 + we2, e1 > 0 

and ⎤ 
−w w 

−w w⎢⎢⎢⎣ 

⎥⎥⎥⎦ė̄ = e.̄ . .. .. . 
−w 

Since w > 0, it follows that ē converges to 0 exponentially fast, i.e. there exists constants α, β > 
0, such that 

|ei(t)| ≤ |ei(0)|α exp(−βt), i = 2, 3, ..., N. (90) 

From (89), we have that ė1 ≤ −we1 + we2, which together with the continuity of ė1 implies that 

αw 
e1(t) ≤ |e1(0)| exp(−wt) + |e2(0)| [exp(−β0t) − exp(−wt)], (91)

w − β0 

where 0 < β0 < min{w, β}. Therefore, e1 is bounded from above by a function that decays 
exponentially fast to 0 with time. If ∀t ≥ 0, e1(t) > 0, then e1(t) converges exponentially fast to 
0. Otherwise, if ∃t0 ≥ 0, such that e1(t0) ≤ 0, then we have the following cases: 

109 



Integrated Traffc Flow Control in a Connected Network 

Case I: If e1(0) ≤ 0, then as long as e1(t) ≤ 0, we have Z t Z t αw 
e1(t) = e1(0) + we2(τ)dτ ≥ −|e1(0)| − w|e2(τ )|dτ ≥ −|e1(0)| − |e2(0)| exp(−βt),

β0 0 

which together with (91) implies that for any given � > 0, there exists a fnite time T such that 

−|e1(0)| − � ≤ e1(t) ≤ �, ∀t ≥ T, 

which implies that the equilibrium e1 = 0 is stable in the sense of Lyapunov. 
Case II: If e1(0) > 0, note that e1(t0) ≤ 0, then due to the uniform continuity of e1, we have that 
∃t1 ∈ (0, t0], such that e1(t1) = 0. Then ∀t ≥ t1, as long as e1(t) ≤ 0, we have Z t Z t αw 

e1(t) = we2(τ)dτ ≥ − w|e2(τ )|dτ ≥ − |e2(0)| exp(−βt1)[1 − exp(−β(t − t1))]
βt1 t1 

αw ≥ − |e2(0)| exp(−βt1),
β 

which together with (91) implies that for any given � > 0, there exists a fnite time T ≥ t1 such 
that 

αw − |e2(0)| exp(−βt1) ≤ e1(t) ≤ �, ∀t ≥ T, 
β 

which implies that the equilibrium e1 = 0 is stable in the sense of Lyapunov. 
To summarize the above analysis, we have that the equilibrium state ρe = (ρj − 

w
d ) × 1 is stable 

in the sense of Lyapunov. 
d d d(3) When ρe ∈ {ρ| d ≤ ρi < ρj − , ρk = , 1 ≤ k < i, ρr = ρj − , i < r ≤ N},

vf w vf w 

i = 1, 2, ..., N − 1, ∀ρ(0) that satisfy kρ(0) − ρek < η, if η is suffciently small, we can get the 
fow rates from equation (34) as follows: q1 = d, qk = vf ρk−1, k = 2, ..., i, qr = w(ρj − ρr), r = 
i + 1, ..., N , and qN+1 = (1 − �0)Cd = d. Therefore, we have 

ρ̇1 = d − vf ρ1, 

ρ̇k = vf ρk−1 − vf ρk, k = 2, ..., i − 1, 

ρ̇i = vf ρi−1 − w(ρj − ρi+1), 

ρ̇r = w(ρj − ρr) − w(ρj − ρr+1), r = i + 1, ..., N − 1, 

ρ̇N = w(ρj − ρN ) − d. 

Let ei = ρi − ρei and e = [e1, e2, ..., eN ]
T , the dynamics of e can be presented in the compact form 

as follows: 
ė = Ae, 
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where ⎤⎡ −vf 0 
vf −vf 0 

. . .. . .. . . 
vf 0 wA = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, 
0 −w w 

. . . . . . . . . 
0 −w

Let ē = [e1, e2, ..., ei−1]T and e = [ei+1, ..., eN ]
T , then ⎤⎡ 

−vf 

vf −vf 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ė̄ = ē . .. .. . 
vf −vf 

and ⎤⎡ 
−w w 

. . . . . . 
−w w 

−w 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ė = e. 

The above two subsystems are both linear and exponentially stable. Thus ē and e both converge 
to 0 exponentially fast. ėi = vf ei−1 + wei+1, therefore Z Zt t 

ei(t) = ei(0) + vf ei−1(τ)dτ + w ei+1(τ)dτ. 
0 0 

Since 
kei−1k ≤ kēk ≤ kē(0)kα1 exp(−β1t), 

kei+1k ≤ kek ≤ ke(0)kα2 exp(−β2t), 

where α1, α2, β1, β2 > 0, thus Z t 

ei = ei(0) + (vf ei−1 + wei+1)dτ, 
0Z t 

keik ≤ kei(0)k + (vf kei−1k + wkei+1k)dτ 
0 Z Zt t 

≤ kei(0)k + vf kē(0)kα1 exp(−β1t)dτ + w ke(0)kα2 exp(−β2t)dτ 
0 0 

vf α1 wα2 
= kei(0)k + kē(0)k (1 − exp(−β1t)) + ke(0)k (1 − exp(−β2t)). 

β1 β2 
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Since we have shown before that ∀ρ(0) ∈ S, ρ(t) converges to a constant, i.e. the limit limt→∞ ρ(t) 
exists, which implies that the limit limt→∞ keik also exists. Therefore, 

vf α1 wα2
lim keik ≤ kei(0)k + kē(0)k + ke(0)k . 
t→∞ β1 β2 

For all µ > 0, by selecting ρ(0) suffciently close to ρe , we have kρ(t) − ρek ≤ µ, ∀t ≥ 0, i.e. all 
equilibrium points ρe ∈ {ρ| d ≤ ρi < ρj − d , ρk = d , 1 ≤ k < i, ρr = ρj − d , i < r ≤ N},

vf w vf w 

i = 1, 2, ..., N − 1 are stable in the sense of Lyapunov. 
(4) When ρe ∈ {ρ|ρi = d/vf , i = 1, 2, ..., N − 1, Cd < ρN < ρj − d } , ∀ρ(0) that satisfy 

vf w 

kρ(0) − ρek < η, if η is suffciently small, we get the fow rates from equation (34) as: q1 = d, 
qi = vf ρi−1, i = 2, 3, ..., N , and qN+1 = (1 − �0)Cd = d. Therefore we have that 

ρ̇1 = d − vf ρ1, 

ρ̇i = vf ρi−1 − vf ρi, i = 2, ..., N − 1, 

ρ̇N = vf ρN−1 − d. 

Let ei = ρi − ρei and e = [e1, e2, ..., eN ]
T , the dynamics of e can be expressed in the compact form 

as follows: 
ė = Ae, 

where ⎤⎡ 
−vf 

vf −vf 
. . 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 
A = . . .. . 

vf −vf 

vf 0 

The stability of ρe can be shown by following a similar analysis as in previous case. 
Therefore, all ρe ∈ Se are stable in the sense of Lyapunov. Recall that ∀ρ(0) ∈ S, ρ(t) converges 
to an equilibrium state in Se, thus ∀µ > 0, ∃η > 0, such that ∀ρ(0) that satisfy kρ(0) − ρek < η, 
ρ(t) converges to some ρ̄e ∈ Se that satisfes kρ̄e − ρek < µ. 

d ≤ ρj − (1−�0)Cdc) For the case I ∈ Ω3, from part a) of Lemma B.1, we know ≤ ρei w , i = 
vf 

d ≤ ρe ≤ ρj − d e1, 2, ..., N . If , then w(ρj − ρe) ≥ d, thus q = min{d, C, w(ρj − ρe)} = d 
vf 1 w 1 1 1 

e eand qi = q1 = d, i = 2, 3, ..., N + 1, according to the equilibrium condition (35). Solving 
ethe equation q = d gives only one solution ρe = d/vf . For i = 1, 2, ..., N − 1, given N+1 N 

ρe e e e ≤ w(ρj − ρe= d/vf , q = q = d, we have d = q ), thus ρe ≤ ρj − d/w. Sincei+1 i i+1 i i i 

e q = min{vf ρi
e , w̃(ρ̃j − ρe), C, w(ρj − ρe )}i+1 i i+1 

and 
w(ρj − ρe ) > C > d, as ρe = d/vf < ρc,i+1 i+1 
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w̃(ρ̃j − ρei ) ≥ w̃[ρ̃j − (ρj − d/w)] > w[ρj − (ρj − d/w)] = d. 
eThe equation q = d gives only one solution, that is vf ρ

e = d,i+1 i 

ρe 
i = d/vf . 

By mathematical induction, we have that ρi
e = d/vf , i = 1, 2, ..., N . Therefore in the region 

d ≤ ρe ≤ ρj − d , system (34) has only one equilibrium state d × 1. 
vf 1 w vf 

≤ ρj − (1−�0)CdIf ρj − d < ρe , we have w(ρj − ρe) < d < C, thus 
w 1 w 1 

e q = min{d, C, w(ρj − ρe)} = w(ρj − ρe) < d.1 1 1 

< ρe ≤ ρj − (1−�0)Cd e e eFor i = 2, 3, ..., N , given ρj − 
w
d 

i−1 w and qi−1 = qi = q1 = w(ρj − ρ1 
e), then 

we have 
e qi = min{vf ρ

e w(ρ̃j − ρe ), C, w(ρj − ρi
e)} = w(ρj − ρe 

i−1, ˜ i−1 1). 

Since vf ρ
e
i−1 > C > d as ρi

e 
−1 > ρc, vf ρ

e =6 w(ρj − ρe). If w̃(ρ̃j − ρe ) = w(ρj − ρe), then i−1 1 i−1 1 

e qi−1 ≤ w(ρj − ρei−1) < w̃(ρ̃j − ρi
e 
−1) = w(ρj − ρe 

1), 

which contradicts the fact that qe = w(ρj − ρe), therefore w̃(ρ̃j − ρe ) 6= w(ρj − ρe). Thus wei−1 1 i−1 1 

have 
e ) = w(ρj − ρe = ρe qi = w(ρj − ρei 1) and ρi

e 
1, i = 2, 3, ..., N. 

≤ ρj − (1−�0)Cd eTherefore ρj − d < ρe , equation (34) gives that q = (1 − �0)Cd. Using the 
w N w N+1 

eequilibrium condition (35), we have qi = w(ρj − ρei ) = (1 − �0)Cd for i = 1, 2, ..., N , which gives 
only one solution, that is, (ρj − (1−�

w 
0)Cd ) × 1 is the only equilibrium state of system (34) in the 

≤ ρj − (1−�0)Cd d = (ρj − (1−�0)Cdregion ρj − d < ρe . To summarize, ρe1 = × 1 and ρe2 ) × 1 
w 1 w vf w 

are 2 isolated equilibrium states of system (34) when I ∈ Ω3. 
Now we are going to show that for all 0 ≤ ρ(0) ≤ ρj , ρ(t) converges to either ρe1 or ρe2 . Ac-
cording to part a) of Lemma B.1, we have that ∀δ > 0, ∃T > 0, such that d/vf − δ < ρi < 
ρj − (1 − �0)Cd + δ, i = 1, 2, ..., N . Without loss of generality, let T = 0. 
If ∀t ≥ 0, ρN (t) ≤ Cd , then w(ρj − ρN ) > C, due to Cd < ρc. We have 

vf vf 

qN = min{vf ρN−1, w̃(ρ̃
j − ρN−1)}, 

qN−1 = min{vf ρN−2, w̃(ρ̃
j − ρN−2), C, w(ρ

j − ρN−1)} ≤ w(ρj − ρN−1). 

Therefore, ∀ρN−1 > ρc, ρ̇N−1 = qN −1 − qN ≤ w(ρj − ρN−1) − w̃(ρ̃j − ρN−1) < 0, thus 
lim sup ρN−1 ≤ ρc. Consequently, we have that lim sup ρi ≤ ρc, i − 1, 2, ..., N − 1. When 
t→∞ t→∞ 

ρei ≤ ρc, i = 1, 2, ..., N − 1, ρN ≤ Cd/vf , equation (34) gives that q1 = d, qi = vf ρi−1, i = 
2, 3, ..., N + 1, therefore, 

ρ̇1 = d − vf ρ1, 

ρ̇i = vf ρi−1 − vf ρi, i = 2, 3, ..., N. 
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which can be written in the compact form as 

d 
ρ̇ = A(ρ − × 1) 

vf 

where ⎤⎡ 
−vf 

vf −vf 
⎢⎢⎢⎣ 

⎥⎥⎥⎦A = .. .. .. . 
vf −vf 

Since vf > 0, we have that A is Hurwitz. Therefore ρ(t) converges to ρe1 = d × 1 exponentially
vf 

fast. 
If there exists t0 ≥ 0, ρN (t0) > Cd , then qN+1(t0) = (1 − �0)Cd, due to Cd < ρN (t0) < 

vf vf 

ρj − (1 − �0)Cd + δ. Recall that 

qN = min{vf ρN −1, w̃(ρ̃
j − ρN−1), C, w(ρ

j − ρN )}. 

and d/vf − δ < ρN−1 < ρj − (1 − �0)Cd + δ, we have that 

vf ρN −1 > d − vf δ, 

w̃(ρ̃j − ρN−1) > w̃(ρ̃j − (ρj − (1 − �0)Cd + δ)) 

= (w − w̃)(ρj − (1 − �0)Cd − ρc wδ.) + (1 − �0)Cd − ˜ 

therefore ⎧ 

⎪⎨ 

⎪⎩ 

(1 − �0)Cd (1 − �0)Cd 
> −α1[ρN − (ρj − )] > 0, if ρN < ρj − 

w w 
(1 − �0)Cd 

= ρj − , (92)ρ̇N = qN − qN+1 = 0, if ρN 
w 

(1 − �0)Cd (1 − �0)Cd 
< −α2[ρN − (ρj − )] < 0, if ρN > ρj − 

w w 

where 

d − vf δ − (1 − �0)Cd (w − w̃)(ρj − (1 − �0)Cd − ρc) − wδ˜ 
α1 = min{ , , w}

ρj − (1 − �0)Cd/w ρj − (1 − �0)Cd/w 

and 
d − vf δ − (1 − �0)Cd (w − ˜ ) − ˜w)(ρj − (1 − �0)Cd − ρc wδ 

α2 = min{ , , w}. 
(1 − �0)Cd/w (1 − �0)Cd/w 

When δ is suffciently small, α1 and α2 are both positive. Therefore ρN (t) > Cd , ∀t ≥ t0 and 
vf 

ρN (t) converges to ρj − (1− 
w
�0) exponentially fast. Consequently, ρi(t) also converges exponen-

114 



⎪⎪⎪⎪
⎪⎪⎪⎪

Integrated Traffc Flow Control in a Connected Network 

tially fast to ρj − (1− 
w
�0) for i = 1, 2, ..., N − 1, that is, ρ(t) converges exponentially fast to ρe2 . 

Therefore, for all initial condition ρ(0) ∈ S, ρ(t) converges to one of the two equilibrium states 
exponentially fast. 

≤ ρj − (1−�0)CdFrom the analysis above, we have that ∀ρ(0) ∈ {ρ| d − δ ≤ ρi + δ, i = 
vf w 

Cd ≤ ρj − (1−�0)Cd1, 2, ..., N − 1, < ρN + δ}, ρ(t) converges to the equilibrium state ρe2 
vf w 

exponentially fast. Therefore this equilibrium state is locally exponentially stable. 
Similar to the case I ∈ Ω2, we can show that for all ρ(0) ∈ {ρ|0 ≤ ρi ≤ Cd/vf , i = 1, 2, ..., N}, 
ρ(t) converges to the point ρe1 exponentially fast. Therefore this equilibrium state is exponen-
tially stable. 

d) When I ∈ Ω4, d > Cb. If ρe is an equilibrium state of system (34), then we have min{d,C} ≤ 
vf 

≤ ρj − (1−�0)Cdρei w , i = 1, 2, ..., N by using Lemma B.1, in this region 

e q = min{vf ρN
e , w̃(ρ̃j − ρeN ), (1 − �(ρN

e ))Cd} = (1 − �0)Cd,N+1 

eFrom the equilibrium condition (35), we have that qi = (1 − �0)Cd, i = 1, 2, ..., N . Recall that 

e q = min{d, C, w(ρj − ρe 
1)}.1 

eSince d > (1 − �0)Cd and C > (1 − �0)Cd, q1 = (1 − �0)Cd gives only one solution ρe 
1 = 

ρj − (1−�0)Cd = ρj − (1−�0)Cd 

w . For i = 2, 3, ..., N , given ρei−1 w , we check the value of ρi
e . Recall that 

e q = min{vf ρ
e w(ρ̃j − ρe ), C, w(ρj − ρe)}.i i−1, ˜ i−1 i 

Since vf ρ
e
i−1 > C > (1 − �0)Cd and w̃(ρ̃j − ρi

e 
−1) > w(ρj − ρi

e 
−1) = (1 − �0)Cd as ρi

e 
−1 > ρc, 

e = ρj − (1−�0)Cdthus q = (1 − �0)Cd gives w(ρj − ρe) = (1 − �0)Cd, i.e., ρe . Therefore the pointi i i w 

(ρj − (1−�0)Cd 

w ) × 1 is the unique equilibrium state of system (34) when I ∈ Ω4. 
(1−�0)CdFor all ρ(0) ∈ Sδ

I , we have vf ρN > d − vf δ and w̃(ρ̃j − ρN ) > w̃(ρ̃j − ρj + 
w − δ) by using 

Lemma B.1. Take δ to be suffciently small, we have vf ρN > Cd and w̃(ρ̃j − ρN ) > (1 − �0)Cd. 
Thus 

qN+1 = min{vf ρN , w̃(ρ̃
j − ρN ), (1 − �(ρN ))Cd} = (1 − �0)Cd, 

then 

ρṄ = qN − qN+1 = min{vf ρN−1, w̃(ρ̃
j − ρN−1), C, w(ρ

j − ρN )} − (1 − �0)Cd. (93) 

Similar to equation (92), we have ⎧ 
(1 − �0)Cd (1 − �0)Cd 

> −α1[ρN − (ρj − )] > 0, if ρN < ρj − 
w w⎪⎨ 

(1 − �0)Cdρ̇N = 0, if ρN = ρj − , 
w ⎪ (1 − �0)Cd (1 − �0)Cd⎩ < −α2[ρN − (ρj − )] < 0, if ρN > ρj − 

w w 
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where 

d − vf δ − (1 − �0)Cd (w − w̃)(ρj − (1 − �0)Cd − ρc) − wδ˜ 
α1 = min{ , , w}

ρj − (1 − �0)Cd/w ρj − (1 − �0)Cd/w 

and 
d − vf δ − (1 − �0)Cd (w − ˜ ) − ˜w)(ρj − (1 − �0)Cd − ρc wδ 

α2 = min{ , , w}. 
(1 − �0)Cd/w (1 − �0)Cd/w 

When δ is suffciently small, α1 and α2 are both positive. Therefore ρN converges to ρj − (1−�
w 
0)Cd 

exponentially fast. 
Based on the converges of ρN , we can show that ρN−1 also convergences to ρj − (1−�

w 
0)Cd , fol-

lowed by ρN−2 through ρ1. Therefore, ∀ρ(0) ∈ S, ρ(t) converges to (ρj − (1−�
w 
0)Cd ) × 1 exponen-

tially fast. 

e) For the case I ∈ Ω5 The proof of this part can be demonstrated by following the same routine 
of the case of I ∈ Ω1 based on part b) of Lemma B.1. For the sake of briefness, we omit the 
detailed proof here. 

C Proof of Theorem 7.1 
4S 

a) If I ∈ Ωi, the VSL controller (41) is applied. First we show that the controller v is well-
i=1 

defned ∀ρ ∈ [0, ρj ]. According to (41), v̄ 1 is defned in the region Cd − δ2 ≤ ρ ≤ ρj , in which 
vf 

q2 ≤ Cd and x + δ1 > 0. Therefore the denominator of v̄ 1 

wρj − q2 + λ(x + δ1) ≥ wρj − Cd > w(ρj − ρc) − Cd = C − Cd > 0. 

Hence v1 = med{0, v̄ 1, vf } is well-defned in the region Cd − δ2 ≤ ρ ≤ ρj . v̄ 2 is defned in the 
vf 

vf wρjregion 0 ≤ ρ ≤ Cd , in which q2 = vf ρ = Cd + vf x. Since 0 < λ < and −Cd ≤ x ≤ 0, we 
vf Cd vf 

have that 
q2 − λx = Cd + vf x − λx > Cd + vf x ≥ 0 

and 

vf wρ
j vf wρ

j Cd
wρj − (q2 − λx) > wρj − Cd − (vf − )x ≥ wρj − Cd − (vf − )(− ) = 0 

Cd Cd vf 

due to vf − vf wρj 

< 0. Therefore, the denominator of v̄ 2 is greater than 0, v2 = med{0, v̄ 2, vf } isCd 
w(q2−λx)well-defned, and v̄ 2 = > 0.

wρj −(q2−λx)
Now we fnd the equilibrium point of system (36),(41) and analyze its stability properties. We 

v1wρjhave that ∀ρ(0) ∈ (Cd/vf , ρ
j ], v = v1. If v1 = 0, i.e. v̄ 1 ≤ 0, we have q1 = 

v1+w = 0. In the 
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region Cd − δ2 ≤ ρ ≤ ρj , we have 
vf 

Cd 
vf ρ ≥ Cd − vf δ2 > 0, as δ2 < , 

vf 

w̃(ρ̃j − ρ) ≥ w̃(ρ̃j − ρj ) > 0, as ρ̃j > ρj ≥ ρ, 

(1 − �(ρ))Cd ≥ (1 − �0)Cd > 0, as �0 < 1. 

Therefore, 

q2 = min{vf ρ, w̃(ρ̃
j − ρ), (1 − �(ρ))Cd} ≥ min{Cd − vf δ2, w̃(ρ̃

j − ρj ), (1 − �0)Cd} 
min{Cd − vf δ2, w̃(ρ̃

j − ρj ), (1 − �0)Cd} Cd≥ (ρ − + δ1)
ρj − Cd/vf + δ1 vf 

ρ−Cd/vf +δ1due to Cd − δ2 ≤ ρ ≤ ρj , which implies 0 < ≤ 1, since δ2 < δ1. Thus we have 
vf ρj −Cd/vf +δ1 

min{Cd − vf δ2, w̃(ρ̃
j − ρj ), (1 − �0)Cd} Cd

ρ̇ = q1 − q2 ≤ − (ρ − + δ1) (94)
ρj − Cd/vf + δ1 vf 

If v1 > 0, i.e., v̄ 1 > 0, v1 = min{v̄ 1, vf } ≤ v̄ 1 and 

v1wρ
j v̄ 1wρj (v1 − v̄ 1)w − = wρj ≤ 0, 

v1 + w v̄ 1 + w (v1 + w)(v̄1 + w) 

v̄1wρjwhich implies v1wρj ≤ 
¯ . Hence,

v1+w v1+w 

v1wρ
j v1wρ

j v̄ 1wρj 
q1 = min{d, , C, w(ρj − ρ)} ≤ ≤ = q2 − λ(x + δ1) 

v1 + w v1 + w v̄ 1 + w 

and 
Cd

ρ̇ = q1 − q2 ≤ −λ(ρ − + δ1) < 0. (95) 
vf 

According to equation (94) and (95), 

Cd
ρ̇ ≤ −α(ρ − + δ1), 

vf 

min{Cd−vf δ2,w̃(ρ̃j −ρj ),(1−�0)Cd}where α = min{λ, } > 0. Using Lemma 3.2.4 in [81], we have 
ρj −Cd/vf +δ1 

Cd Cd −αtρ(t) ≤ − δ1 + [ρ(0) − + δ1]e . 
vf vf 

Since Cd/vf − δ1 < Cd/vf − δ2 < Cd/vf < ρ(0), ρ(t) will decrease exponentially to the value 
ρ(t0) = Cd/vf − δ2 at some fnite time t0, at which v switches to v2, in which case the dynamics 
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of ρ(t) are analyzed below. 
Either the initial condition 0 ≤ ρ(0) ≤ Cd or v switches to v2 from v1, there exists a t0 ≥ 0, at 

vf 

which 0 ≤ ρ(t0) ≤ Cd and v = v2. Since v̄ 2 > 0, we have v2 = min{v̄ 2, vf } ≤ vf and 
vf 

v2wρ
j vf wρ

j 

≤ = C < w(ρj − ρ) as ρ ≤ Cd/vf < ρc. 
v2 + w vf + w 

Therefore, 

v2wρ
j v2wρ

j vf wρ
j v̄ 2wρj 

q1 = min{d, , C, w(ρj − ρ)} = min{d, } = min{d, , }
v2 + w v2 + w vf + w v̄ 2 + w 

v̄ 2wρj 
= min{d, } = min{d, q2 − λx}

v̄ 2 + w 

and q2 = Cd + vf x. Consequently, 

Cd
ρ̇ = q1 − q2 = min{d − vf ρ, −λ(ρ − )}. (96)

vf 

In the case d > Cd, we have ρ̇ ≥ − min{vf , λ}(ρ − Cd ), ∀ρ ∈ [0, Cd/vf ] and ρ̇ = 0 at ρ = Cd/vf ,vf 

which implies that ρ(t) converges exponentially fast to ρ = Cd , and ∀t ≥ t0, ρ ≤ Cd , therefore the 
vf vf 

fow at the exit of the section q2 = vf ρ converges to Cd. In the case d ≤ Cd, ⎧ 
d d ≥ − min{vf , λ}(ρ − ) if ρ ∈ [0, ) 
vf vf⎪⎨Cd d 

ρ̇ = min{d − vf ρ, −λ(ρ − )} = 0 if ρ = . (97) 
vf vf 

d d Cd⎪⎩ ≤ −vf (ρ − ) if ρ ∈ ( , ] 
vf vf vf 

Therefore, ρ(t) converges to d exponentially fast, and q2 = vf ρ converges to d with the same 
vf 

min{d,Cd}rate. In summary, the closed-loop system (36) - (41) has a unique equilibrium point ρe = . 
vf 

In addition, ∀ρ(0) ∈ [0, Cd ], ρ(t) converges to ρe exponentially fast and ∀ρ(0) ∈ (Cd , ρj ], ρ(t) de-
vf vf 

creases to Cd − δ2 exponentially fast and then converges to ρe exponentially fast. The fow rate 
vf 

at the exit of the section converges to the maximum possible value min{d, Cd} exponentially fast 
while the speed of fow converges with the same rate to vf . 
b) Part b) of Theorem 7.1 can be derived directly from part e) of Theorem 6.1. 
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D Proof of Theorem 7.2 
a) In controller (48), v1 through vN−1 is well-defned by letting vi = vf when ρi = 0, for i = 

vf wρj 

1, 2, ..., N − 1. Since 0 < λ0 ≤ 
Cd 

, we can show that v0 is also well-defned in a similar 
manner to the single section case in Theorem 7.1. 
For all ρN (0) ∈ (Cd , ρj ], v̄ N−1 = v̄ N−1,1. If vN−1 = 0, i.e. v̄ N−1,1 ≤ 0, we have qN = 0, thus in 

vf 

the region Cd − δ2 ≤ ρN (t) ≤ ρj , we have 
vf 

ρ̇N = −qN+1 = − min{vf ρN , (1 − �(ρN ))Cd, w̃(ρ̃
j − ρN )} 

min{Cd − vf δ2, w̃(ρ̃
j − ρj ), (1 − �0)Cd} Cd≤ − (ρN − + δ1). 

ρj − Cd/vf + δ1 vf 

If vN−1 > 0, i.e. v̄ N −1 > 0, then qN ≤ vN−1ρN−1 ≤ v̄ N−1ρN −1, 

Cd
ρ̇N ≤ v̄ N−1ρN−1 − qN+1 = −λN−1(ρN − + δ1). 

vf 

Therefore, ∀ρN (0) ∈ (Cd , ρj ], we have 
vf 

Cd
ρ̇N ≤ −α(ρN − + δ1), 

vf 

min{Cd−vf δ2,w̃(ρ̃j −ρj ),(1−�0)Cd} Cdwhere α = min{λN−1, } > 0. Since α > 0 and Cd − δ1 < − δ2 <ρj −Cd/vf +δ1 vf vf 
Cd < ρN (0), and Cd − δ2 > 0, ρN (t) will decrease exponentially fast to the value Cd − δ2 at some 
vf vf vf 

fnite time t0, at which v̄ N−1 switches to v̄ N−1,2, in which case ρ(t) evolves as analyzed below. 
Either the initial condition ρN (0) ∈ [0, Cd ] or v̄ N−1 switches to v̄ N−1,2 from v̄ N−1,1 at ρN = 

vf 
Cd Cd− δ2, there exists t0 ≥ 0, at which time instant ρN (t0) ≤ and v̄ N−1 = v̄ N−1,2. Since 
vf vf 

ρN ≤ Cd , qN+1 ≥ 0, and ρN−1 ≥ 0, we have v̄ N−1,2 ≥ 0 from equation (48), thus vN−1 = 
vf 

min{vf , v̄ N−1,2}. Therefore 

Cd
ρ̇N ≤ v̄ N−1,2ρN−1 − q2 = −λN−1(ρN − ). 

vf 

Without loss of generality, let t0 = 0, then we have 

Cd Cd −λN −1tρN (t) ≤ + (ρN (0) − )e , 
vf vf 

which implies that ∀t ≥ 0, ρN (t) ≤ Cd , v̄ N−1 = v̄ N−1,2. Then we examine the dynamics of ρN−1. vf 
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If vN−2 = 0, i.e. v̄ N −2 ≤ 0, qN −1 = 0, we have 

vN −1wρ
j 

ρ̇N−1 = −qN = − min{vN−1ρN−1, , C, w(ρj − ρN )}. 
vN−1 + w 

Since ρN ≤ Cd < ρc, w(ρ
j − ρN ) > C and vN−1 = min{vf , v̄ N−1,2}, we have 

vf 

v̄ N−1,2wρj vf wρ
j 

ρ̇N−1 = − min{v̄ N−1,2ρN−1, vf ρN−1, , , C}. 
v̄ N−1,2 + w vf + w 

≤ CdSince 0 ≤ ρN , λN−1 > vf and ρN−1 ≤ ρj , we have 
vf 

Cd Cd Cd 
v̄ N −1,2ρN−1 = Cd + (vf − λN−1)(ρN − ) ≥ Cd ≥ (ρN−1 − ), 

vf ρj − Cd vf vf 

Cd 
vf ρN−1 ≥ vf (ρN−1 − ), 

vf 

v̄ N−1,2wρj Cd + (vf − λN−1)xN wρj vf Cd 
= wρj ≥ 

v̄ N−1,2 + w Cd + (vf − λN −1)xN + wρN−1 vf wρj + λN−1Cd 

wρj vf Cd Cd≥ (ρN−1 − ), 
(vf wρj + λN−1Cd)(ρj − Cd ) vf vf 

vf wρ
j C Cd 
= C ≥ (ρN−1 − ). 

vf + w ρj − Cd vf vf 

Cd wρj vf Cd CThus ρ̇N −1 ≤ − min{ , vf , , }(ρN−1 − Cd ). If vN−2 > 0, i.e. Cd Cd Cdρj − (vf wρj +λN−1Cd)(ρj − ) ρj − vf 
vf vf vf 

v̄ N−2 > 0, 
Cd

ρ̇N−1 ≤ v̄ N−2ρN−2 − qN = −λN−2(ρN−1 − ). 
vf 

To conclude, 
Cd

ρ̇N−1 ≤ −α(ρN−1 − ), 
vf 

where 
Cd wρj vf Cd C 

α = min{ , vf , , , λN−2} > 0. 
ρj − Cd (vf wρj + λN−1Cd)(ρj − Cd ) ρj − Cd 

vf vf vf 

Cd+(vf −λN −1)xNTherefore lim sup ρN −1(t) ≤ Cd/vf and lim inf v̄ N−1,2 ≥ vf due to v̄ N−1,2 = ≥
Cd/vf +xN−1t→∞t→∞ 

Cd , which implies limt→∞ vN−1 = vf .ρN −1 

Similarly, we can show that lim sup ρi(t) ≤ Cd/vf and limt→∞ vi = vf for i = 1, 2, ..., N − 1. 
t→∞ 
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Then the dynamics of ρ(t) become 

v̄ 0wρj vf wρ
j 

ρ̇1 = min{d, , } − vf ρ1 = min{d − vf ρ1, C − vf ρ1, −λ0(ρ1 − Cd/vf )}, 
v̄ 0 + w vf + w 

ρ̇i = vf ρi−1 − vf ρi, i = 2, ..., N. 

Note that the frst differential equation is the same as equation (96) in the single-section case. 
Therefore we can directly take the analysis result of equation (96), which shows that ρ1 con-

min{d,Cd}verges to ρ1 = exponentially fast. Consequently, ρi converges exponentially fast to 
vf 

min{d,Cd} Cdρi = , for i = 1, 2, ..., N . Recall that ρN (t) ≤ , ∀t ≥ t0, thus qN +1 converges to Cdvf vf 

exponentially fast. Consequently, qi converge to Cd exponentially fast for i = 1, 2, ..., N . 
b) This part can be shown directly with part e) of Theorem 6.2. 
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	Due to the rapidly increasing demand for transportation, congestion has become a signifcant problem all around the world. Congestion has negative impact on traffc mobility, safety and the environment. In the United States, the yearly delay time per auto commuter due to congestion was 42 hours in 2014, which is increased by 13.5% compared to 37 hours in 2000. The fuel wasted in congestion is 19 gallons per commuter per year in 2014, which increased by 26.7% when compared to 15 gallons per commuter per year i
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	Figure 1: Traffc Flow Control Signs on Highway 
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	There are various factors that may lead to highway congestion. For example, capacity drop at highway bottlenecks which deteriorates the maximum possible throughput of a highway, overloaded mainline traffc which creates shockwave propagating upstream and excessive on-ramp fow which disturbs the mainline traffc. Due to the variety and complexity of underlying reasons of highway congestion, it has never been an easy task to fnd a control strategy which is able to effciently regulate the traffc fow and improve 
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	(LC) control are among the most intensively studied and applied highway traffc fow control 
	strategies. Variable speed limit dynamically changes the speed limits along a highway segment thus regulates the traffc fow and improve traffc condition at the bottleneck. Ramp metering limits the number of vehicles entering the highway in unit time from on-ramps in order to maintain an appropriate demand on highway and attenuate the disturbance of ramp fows to the mainline. Lane change control provides lane change instructions to vehicle drivers therefore help them avoid closed lanes and effciently move to
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	2. 
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	Is it possible to reduce the level of disorder at the bottleneck, therefore the consistency between macroscopic and microscopic simulations can be achieved? 
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	3. 
	3. 
	Is it possible to fnd effcient VSL, RM and LC control strategies which are able to improve the traffc mobility at highway bottlenecks and robust to different incident scenarios? 

	4. 
	4. 
	Given the complexity of underlying reasons of highway congestion, is it possible to apply multiple traffc fow control strategies simultaneously in an integrated and systematic manner, such that different control strategies can work along with each other coordinately without deteriorate the beneft introduced by other control strategies. 
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	5. 
	5. 
	Is it possible to fnd a traffc control strategy that can improve the traffc mobility under all possible traffc scenarios and capacity constraints as well as initial conditions? 


	In this study, to answer the above questions, the problem of analysis of traffc fow systems and the design, analysis and evaluation of integrated VSL, RM and LC controller for highway traffc is addressed. The goal of the integrated controller is to stabilize and homogenize the traffc fow upstream a highway bottleneck, therefore improve the traffc mobility, safety and the environmental impact. We also evaluate the robustness of the integrated controller with respect to different levels of traffc demand, mode
	In this study, to answer the above questions, the problem of analysis of traffc fow systems and the design, analysis and evaluation of integrated VSL, RM and LC controller for highway traffc is addressed. The goal of the integrated controller is to stabilize and homogenize the traffc fow upstream a highway bottleneck, therefore improve the traffc mobility, safety and the environmental impact. We also evaluate the robustness of the integrated controller with respect to different levels of traffc demand, mode
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	transmission traffc fow model (CTM) which takes the capacity drop phenomenon into consideration under all possible traffc fow scenarios are investigated, which motivates the design of a VSL controller which is able to avoid the capacity drop, stabilize the system and maximize the fow rate at the bottleneck. The VSL controller is extended with integral action in order to reject system disturbance. 
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	2 Literature Review 
	2 Literature Review 
	In the past several decades, numerous studies have been conducted to explore the effect of VSL, RM and LC control on traffc mobility, safety and the environmental impact. VSL control has been one of the widely studied highway traffc control technologies since the 1990s [18]. Papageorgiou et al. studied the effect of VSL on the fundamental diagram in [19]. It is shown that VSL control decreases the slope of the fundamental diagram when the vehicle density is lower than the critical value and increases the cr
	In the past several decades, numerous studies have been conducted to explore the effect of VSL, RM and LC control on traffc mobility, safety and the environmental impact. VSL control has been one of the widely studied highway traffc control technologies since the 1990s [18]. Papageorgiou et al. studied the effect of VSL on the fundamental diagram in [19]. It is shown that VSL control decreases the slope of the fundamental diagram when the vehicle density is lower than the critical value and increases the cr
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	make the shockwave accumulate slower and dissipate faster thus dampen the shockwave and improve traffc mobility. In [28], a local feedback VSL control strategy integrated with ramp metering is proposed based on the fundamental diagram. An extended version of this control strategy is evaluated in [29] with microscopic simulations. The method is shown to be able to improve freeway effciency as well as be robust with respect to modeling error and measurement noise. The effects of VSL on traffc safety and the e
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	[38] proposed FL-ALINEA which includes feedback downstream fow rate instead of occupancy and ALINEA/Q algorithm which combines queue control with ALINEA. MALINEA addresses two main disadvantages to ALINEA. The frst is that although ALINEA optimizes the occupancy downstream of the entrance ramp, congestion can still occur upstream of the ramp. The second is that the optimal detector location can be diffcult to determine. Its formula is identical to the formula used for traditional occupancy-based ALINEA, exc
	Figure
	Figure
	The fnal calculated rate is the greater of either the ALINEA rate or the queue control rate. Some model-based RM algorithms are also developed. Coordinated ramp metering is based on a second order traffc fow model and an optimal control approach that decides the metering rates of multiple ramps in a coordinated manner [39]. Coordinated ramp metering is basically a vectorization of the ALINEA equation, which uses vectors of occupancy, and 2 control gain matrices to return a vector of metering rates. SWARM is
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	[44] applied a macroscopic simulation model to evaluate lane closure strategy for planned work zone. The work in [43, 44] is focused on long-term lane closure strategies rather than temporary lane closures. In 1998, Schaefer et al. [45] assessed the effectiveness of overhead lane control signals. The signals are placed at 1/2 mile intervals ahead of the highway incident area and indicate lane closure with red “x” symbols. A microscopic simulation using SLAM was used to evaluate the performance of the lane c
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	Figure
	Figure
	The coordination of RM and VSL involves consideration of network mobility, on-ramp queues and fairness between the mainline and the ramps. The objective is to keep a balanced delay time between vehicles on the mainline and the ramps and avoid long queues on the ramps from spilling back to the urban road network. Past efforts to integrate ramp metering with variable speed limit control include the following: [51,52] chose the optimal VSL and RM commands based on a second order model in an open-loop manner. [
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	3 Combined Variable Speed Limit and Lane Change Control 
	As introduced in section 1, inconsistent performance of variable speed limit and ramp metering controllers have been reported in existing studies. Some researchers attribute the inconsistencies to the highly disordered and stochastic behavior at highway bottlenecks. One of the main factors of the disordered behavior at highway bottlenecks is the capacity drop phenomenon, where the maximum achievable traffc fow rate decreases when queues form [64, 65]. Under certain speed limit, when the density at the vicin
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	Figure 2: Highway Bottleneck 
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	3.1.1. Model of highway bottleneck 
	3.1.1. Model of highway bottleneck 
	Consider a highway segment without on-ramps and off-ramps. A bottleneck is the point with lowest fow capacity. Due to the bottleneck a queue of vehicles forms as traffc demand increases. The fow rate of the bottleneck determines the throughput of the entire highway segment. Therefore, the modeling of the bottleneck traffc fow is crucial to the design of an effcient traffc control strategy. A bottleneck can be introduced by lane drop, incident lane blockage, merge point or other road conditions. Fig. 2 shows
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	Figure 3: Fundamental Diagram 
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	Figure 4: Confguration of VSL Control System 
	Figure


	3.2. VSL confguration and cell transmission model 
	3.2. VSL confguration and cell transmission model 
	As shown in Fig. 4, the upstream highway segment of bottleneck is divided into N sections. The lengths of different sections are expected to be similar but not necessarily identical. VSL signs are installed at the beginning of section 1 through section N − 1. The speed limit in section N, which functions as the discharging section in Fig. 2, is constant and equals vf, the maximum possible speed given by the fundamental diagram, which would let vehicles in open lanes get through the bottleneck as fast as pos
	As shown in Fig. 4, the upstream highway segment of bottleneck is divided into N sections. The lengths of different sections are expected to be similar but not necessarily identical. VSL signs are installed at the beginning of section 1 through section N − 1. The speed limit in section N, which functions as the discharging section in Fig. 2, is constant and equals vf, the maximum possible speed given by the fundamental diagram, which would let vehicles in open lanes get through the bottleneck as fast as pos
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	densities ρi are described by the differential equations 

	Figure
	Figure
	ρ˙i =(qi − qi+1) /Li,i =1, 2,...,N − 1 
	(2)
	ρ˙N =(qN − qb) /LN 
	qi can be found as follows: 
	Under the assumption of triangular fundamental diagram, the fow rate 
	-

	= min{d, C,w(ρj,1 − ρ)}
	1
	1
	1

	(3) 
	q
	1 

	qi = min{vi−1ρi−1,Ci,wi(ρj,i − ρi)},i =2, 3,...,N 
	where d is the demand fow of this highway segment assumed to be constant relative to the other variables. ρj,i is the jam density of section i, at which qi would be 0. wi is the backward propaiCi the capacity, i.e. the maximum possible fow rate in section i, given by Ci = viwiρj,i/(vi + wi). We should note that for i = N, CN and ρN,c are not the same as Cb and ρd,c. When ρN reaches ρd,c, qb decreases but section N still has enough space for vehicles in section N − 1 to fow in. Therefore, ρN,c >ρd,c, CN >Cb.
	-
	gating wave speed in section 
	, 
	controller is to stabilize the system described in (1) -(3) and maximize the fow rate 
	-
	ing to (1), maximum 
	density back to 

	3.3. Effects of Lane Change Control 
	3.3. Effects of Lane Change Control 
	In order to study the effect of lane change control, we build a hypothetical highway segment as shown in Fig. 2, which is straight, 8 km long and with 5 lanes, with the microscopic traffc fow simulated using the commercial software VISSIM [66]. The VISSIM model is calibrated with typical freeway road geometry and driving behavior. The bottleneck is formed by an incident which blocks the middle lane. We investigate the relationship between the fow of the bottleneck qb and the density ρd in the 500 m long dis
	under different levels of traffc demand. Fig. 5 shows the relationship between 
	-
	trol, 
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	Figure
	Figure 5: Fundamental Diagram with and without LC Control 
	Figure
	These forced lane changes at low speed cause the traffc to slow down in the open lanes before and after the incident leading to lower volume, while the average density of the discharging secρd, is still low. Other parts of the fundamental diagram in the no control case ft equation (1) very well. Compared to the fundamental diagram with LC control, we can calibrate the parameters as, ρd,c = 135 veh/mi, Cb = 7600 veh/h and . =0.16. The above stated behavior of the bottleneck makes it diffcult for VSL control 
	-
	tion, 
	-
	to regulate the average density 

	1. 
	1. 
	1. 
	no obvious capacity drop is observed at ρd = ρd,c; 

	2. 
	2. 
	qb at ρd >ρd,c is approximately linear with a negative slope wb, which represents the wave propagation rate; 

	3. 
	3. 
	most data points scatter close to ρd = ρd,c. The points of high density are rare. 


	These observations show that the LC controller is able to reduce the number of vehicle stops in the queue at bottleneck and decrease the vehicle density, which makes the system continuous and easier for the VSL controller to stabilize. As a consequence of the LC control action, in the cell ρN and qb can be modeled as: 
	transmission model the relationship between 

	. 
	vfρN ,ρN ≤ ρd,c
	qb = (4)wb(ρj,d − ρN ),ρN >ρd,c 
	where ρj,d = vfρd,c/wb + ρd,c. 
	Figure
	Figure
	Although the lane change control is able to recover the triangular shape of the fundamental diaCb, a congestion will still occur at the bottleneck. Now the goal is to design a VSL controller to stabilize system (2) -(4) by homogenizing the densities in all sections and have them converge to an equilibrium which corresponds to the maximum possible fow as shown in the following section. 
	-
	gram, when the demand is higher than the capacity 
	-

	3.4. Design of the Lane Change Controller 
	3.4. Design of the Lane Change Controller 
	The design of LC controller includes the pattern of the LC recommendation messages and the length of LC controlled segment. As we will explain below the control variable for LC control is the location of the LC recommendation which depends on a nonlinear spatial model that we developed. 
	3.4.1. Lane Change Recommendation Messages 
	3.4.1. Lane Change Recommendation Messages 
	Suppose a general highway segment has m lanes, with Lane 1 (Lane m) being the right (left) most lane in the direction of fow. We select the LC recommendation message Ri for lane i, i = 1, 2,...,m using the following rules: 
	1. 
	1. 
	1. 
	For 1 ≤ i ≤ m, if lane i is open, Ri = “Straight Ahead”; 

	2. 
	2. 
	For i = 1(i = m), if lane i is closed, Ri = “Change to Left (Right)”; 

	3. 
	3. 
	For 1 <i<m, if lane i is closed, lane i−1 and lane i+1 are both open, Ri = “Change to Either Side”; 

	4. 
	4. 
	For 1 <i<m, if lane i is closed, lane i − 1 (lane i +1) is closed but lane i +1 (lane i − 1) Ri = “Change to Left (Right)”; 
	is open, 


	5. 
	5. 
	For 1 <i<m, if lane i is closed, lane i − 1 and lane i +1 are both closed, then we check Ri−1 and Ri+1. If Ri−1 = Ri+1, then Ri = Ri−1 = Ri+1, else if Ri−1 =6 Ri+1, Ri = “Change to Either Side”. 


	Rules (1)-(5) determine the LC recommendation messages depending on the incident location. The 5 rules covers all incident cases and are also mutually disjoint. Therefore they are well-defned and self-consistent. 



	3.4.2. Length of LC Control Segment 
	3.4.2. Length of LC Control Segment 
	The control variables in the LC control case are the length of the LC control segment and the location of the LC recommendation. Within that segment, a LC recommendation is given at each section within the segment. The length of the LC controlled segment need to be long enough in order to provide adequate space and time for upstream vehicles to change lanes. Intuitively, if more lanes are closed at the bottleneck, a longer LC control distance is required. In addition, the capacity of the bottleneck and dema
	-
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	Figure 6: ξ under different traffc demands 
	Figure
	if the length of LC control segment is too long it may cause other problems as the blocked lane will appear empty to drivers inviting more lane changes in and out of the blocked lane which is going to deteriorate performance in terms of unnecessary maneuvers. We used extensive microscopic simulation studies to develop the following empirical model that allows us to generate the control variable dLC which is the length of the LC controlled section given by the following equation: 
	-
	-

	dLC = ξ · n, (5) 
	where n is the number of lanes closed at the bottleneck, ξ a design parameter related to the capacity of bottleneck and the traffc demand which in our case is found to have the relationship shown in Figure 6. For a specifc highway segment, the minimum value of ξ required under different traffc demands can be found by simulation. Since LC signs are only deployed at the beginning of
	-

	PN
	sections, we choose the number of LC controlled sections M, as M = argmin ,
	i=N−M+1 i LC where li represents the length of section i. More details can be found in [33]. Here we assume that the LC controlled segment has no on-ramp or off-ramps. The model (5) is empirical and more spacial than temporal despite the dependence of ξ on demand which may be time varying. The purpose of the LC control is to ask drivers to start changing lanes before the incident. It is an off and on controller i.e change lanes or not required to change lanes. It is different than the VSL controller which i
	l
	− d



	3.5. Feedback Linearization Variable Speed Limit Controller 
	3.5. Feedback Linearization Variable Speed Limit Controller 
	In this section, we designed a feedback linearization VSL controller based on the cell transmission model (2)-(4). 
	-

	3.5.1. Desired Equilibrium Point 
	3.5.1. Desired Equilibrium Point 
	d>Cb, which may introduce congestion at the bottleneck. From the nonlinear system (2) -(4), we calcu
	The fundamental diagram under LC control is shown in Fig. 7. We consider the demand 
	-
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	Figure 7: Desired Equilibrium Point 
	Figure
	late the equilibrium point by setting the derivatives in (2)-(4) to be zero. Let ρ=[ρ,ρ,...,ρ]
	e 
	e 
	1
	e 
	2
	e 
	N 
	T 

	eee e T
	]

	and v =[v,v,...,vdenote the vector of equilibrium density and the corresponding equilibrium speed limits in each section respectively. The desired equilibrium point should be the one at which maximum possible fow rate Cb is achieved and the upstream traffc fow is homogenized. According to the triangular fundamental diagram (4), since the speed limit is convf in section N, therefore the optimum equilibrium density for maximum fow is ρ= Cb/vf. For section 2 through N − 1, we set 
	1
	2
	N−1 
	-
	-
	stant and equals 
	e 
	N 

	ρ= ··· = ρ= Cb/vf,v = ··· = v = vf. (6)
	e 
	e 
	e 
	e 

	2 N 2 N−1 
	hence at the desired equilibrium point, the densities and speed limits in section 2 through N would be the same and the upstream traffc fow of the bottleneck is homogenized. Since d>Cb, we need to lower the speed limit in section 1 in order to suppress the traffc fow entering the controlled segment. According to (3), the equilibrium point satisfes: 
	vρ= w(ρj,1 − ρ)= Cb. 
	1 
	e
	e 
	1 
	1
	e 
	1

	which gives ρ= ρj,1 − Cb/w,v= Cbw/(ρj,1w− Cb) (7) 
	e 
	1 
	1
	1 
	e 
	1
	1 

	The equilibrium point described in (6) -(7) is the desired equilibrium point which maximizes the fow at the bottleneck and homogenizes the upstream traffc. In addition, it minimizes the average travel time according to the fundamental diagram. Without loss of generality, we assume the length of all sections are the same and equal to unit length. The system (2) -(4) can be expressed 
	The equilibrium point described in (6) -(7) is the desired equilibrium point which maximizes the fow at the bottleneck and homogenizes the upstream traffc. In addition, it minimizes the average travel time according to the fundamental diagram. Without loss of generality, we assume the length of all sections are the same and equal to unit length. The system (2) -(4) can be expressed 
	-

	as follows: 
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	ρ˙= w(ρj,1 − ρ) − vρ
	1 
	1
	1
	1
	1 

	ρ˙i = vi−1ρi−1 − viρi, for i =2,...,N − 1
	. (8) 
	vN−1ρN−1 − vfρN ,ρN ≤ ρd,c
	ρ˙N = 
	vN−1ρN−1 − wb(ρj,b − ρN ),ρN >ρd,c 
	ρN = ρd,c. This is consistent with real-world, since the capaciCb. As long as system (8) converges to the desired equilibrium point, the steady-state bottleneck fow is maximized and upstream traffc is homogenized. 
	In (8), the only switching point is 
	-
	ties of upstream sections are much larger than 
	-


	3.5.2. Feedback Linearization VSL Controller 
	3.5.2. Feedback Linearization VSL Controller 
	For the design and analysis of the VSL controller we defne the deviations of the state of (8) from ei = ρi − ρfor i =1, 2,, ...,N and ui = vi − vfor i =1, 2,...,N − 1. Substitute into (8), we have 
	the desired equilibrium (6) -(7) by defning the error system as: 
	i 
	e 
	i 
	e 

	e˙= −we− ve− uρ
	1 
	1
	1 
	1 
	e 
	1 
	1
	1 

	e˙i = vei−1 + ui−1ρi−1 − vei − uiρi 
	i 
	e 
	−1
	i 
	e 

	for i =2,...,N − 1 (9)
	. 
	veN−1 + uN−1ρN−1 − vfeN ,eN ≤ 0 
	N 
	e 
	−1

	e˙N = 
	e

	veN−1 + uN−1ρN−1 + wbeN ,eN > 0 
	N −1

	The transformation of (8) to (9) shifts the non zero equilibrium state of (8) to the zero equilibrium uiρi for i =1, 2, ..., N − 1. Now the problem is to select uthrough uN−1 in order to stabilize system (9) and force all the errors or deviations from the equilibrium state to converge to zero. We introduce the following feedback controller which ‘kills’ all nonlinearities and forces the closed loop system to be linear, an approach known as feedback linearization [67]. We choose 
	point of (9). The nonlinear terms in (9) are 
	1 

	ui =(−vei − λiei+1)/ρi, for i =1,...,N − 2 
	i 
	e 

	⎧ 
	e

	−λN−1eN − veN−1 + vfeN
	N−1

	⎪ ,eN ≤ 0
	⎨ 
	(10)
	ρN−1 
	uN−1 = 
	e 
	−λ
	N−1
	e
	N 
	− v
	N 
	−1
	e
	N−1 
	− w
	b
	e
	N

	⎪
	⎩ ,eN > 0 
	ρN−1 
	where λi > 0 for i =1,...,N − 1 are design parameters. This is a switching controller, whose eN . Since we avoid the capacity drop by applying the LC control, the controller is continuous at the switching point. With the feedback linearization 
	switching logic is based on the value of 
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	controller (10), the closed loop system becomes: 
	e˙= −we+ λe
	1 
	1
	1 
	1
	2 

	= −λi−1ei + λiei+1, for i =2 ...,N − 2 −λe− λe+ ve,e≤ 0 (11)
	N −2
	N−1 
	N−1
	N 
	f
	N 
	N 

	.
	e˙i 
	e˙N−1 = 
	−λN −2eN−1 − λN−1eN − wbeN ,eN > 0 
	e˙N = −λN−1eN 
	The stability properties of the closed loop system (11) are described by the following Theorem. 
	Theorem 3.1. The equilibrium point ei =0, i =1, 2,...,N of the system (11) is isolated and exponentially stable. The rate of exponential convergence depends on the control design parameters λi, i =1, 2,...,N − 1. 
	-

	Proof For i =1, 2,...,N, setting e˙i =0 in (11), the only equilibrium point is ei =0. From (11), we can see that the state eN is decoupled from other states, i.e. e˙N = −λN−1eN ., whose solution is 
	eN (t)= eN (0) exp(−λN −1t), ∀t> 0. (12) 
	Since exp(−λN−1t) > 0 for all t, eN (t) and eN (0) have the same sign for all t> 0, i.e. if eN (0) ≤ 0, then eN (t) ≤ 0, if eN (0) > 0, then eN (t) > 0 for all t> 0. In other words eN is either non increasing or non decreasing which means that the state eN will not switch between eN ≤ 0 and eN > 0. Therefore, the dynamics of state eN−1 can be written as 
	. 
	−λN−2eN−1 − λN−1eN + vfeN ,eN (0) ≤ 0 
	e˙N−1 = 
	−λN−2eN−1 − λN−1eN − wbeN ,eN (0) > 0 Let us defne e =[e,e,...,eN ], then the system (11) can be written in the compact form 
	1
	2
	T 

	. 
	Ae, eN (0) ≤ 0 
	1

	e˙= (13)
	Ae, eN (0) > 0 
	2

	where
	⎤
	⎡ 
	−wλ−λλ
	1 
	1 
	1 
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	.. 
	⎢⎢⎢⎢⎢⎣ 
	⎥⎥⎥⎥⎥⎦ 
	Ai 
	= 
	,i =1, 2
	. 
	.
	. 
	. 
	−λN−2 −λN−1 + βi −λN −1 
	and β= −wb,β= vf. Aand Aare both upper triangular matrices with all diagonal entries A,Aare both Hurwitz. Hence, system (13) is exponentially eN (0) there is no switching taking place in (13). The rate of convergence to the equilibrium depends on the design parameters λi,i =1, 2, ....N − 1 which can be tuned to achieve a desirable convergence rate. It would also depend on the sign 
	and β= −wb,β= vf. Aand Aare both upper triangular matrices with all diagonal entries A,Aare both Hurwitz. Hence, system (13) is exponentially eN (0) there is no switching taking place in (13). The rate of convergence to the equilibrium depends on the design parameters λi,i =1, 2, ....N − 1 which can be tuned to achieve a desirable convergence rate. It would also depend on the sign 
	1 
	2 
	1 
	2 
	being negative real numbers, i.e. 
	1
	2 
	stable. Therefore (11) is also exponentially stable. In addition, for a given sign of 

	of the initial condition eN (0) as the dynamics that drive the error system depend on whether the initial condition eN (0) is negative or positive. Q.E.D. The feedback linearization controller (10) is continuous in time. To apply it on real highway, we discretize the controller and apply the following constraints. 

	Figure
	Figure
	1. 
	1. 
	1. 
	Discretization in time. We discretized the continuous time VSL control commands using Tc so that the VSL command is kept constant to its value at t = kTc till t =(k + 1)Tc where k =0, 1, 2, .... 
	the sampling period 


	2. 
	2. 
	Finite command space. We use a quantization of 5 mi/h to truncate the generated VLS commands which is easy to follow. 

	3. 
	3. 
	Saturation of Speed Limit Variations. It is dangerous to decrease the speed limit too fast Cv > 0 between successive control periods and highway sections. We don’t bound the speed limit variation if the speed limit increases. In addition the VSL commands never exceed the legal speed limit. 
	in both time and space. The decrease should be within some threshold 



	Using the above constraints we modify the VSL control commands as follows: Let ui(k) denotes ui computed by equation (10) at t = kTc. We have, 
	v¯ i(k)=[v+ ui(k)](14) 
	i 
	e 
	5 

	v˜i(k) = max{v¯ i(k),vi(k − 1) − Cv,vi−1(k) − Cv} (15)
	⎧ 
	⎧ 
	⎧ 

	⎨ vmax, 
	⎨ vmax, 
	if ˜vi(k) > vmax 

	vi(k) = ⎩ 
	vi(k) = ⎩ 
	vmin, ˜vi(k), 
	if ˜vi(k) < vmin otherwise 
	(16) 

	for i = 1, 2, . . . , N − 1, k = 0, 1, 2, . . .. 
	for i = 1, 2, . . . , N − 1, k = 0, 1, 2, . . .. 


	[·]is the operator which rounds a real number to its closest whole 5 number. Equation 
	In (14), 
	5 

	(15) describes the saturation limits on the amount of decrease of VSL commands between successive control steps and highway sections. In (16), vmax and vmin are the upper and lower bounds of VSL commands respectively. The above modifcations will infuence the ideal performance of the VSL controller described by Theorem 1. Such modifcations are necessary in every control application [17,68,69] and the way to deal with possible deterioration from the ideal performance is to use the design parameters λ,λ,...,λN
	-
	1
	2
	the feedback gains 
	1
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	3.5.3. Robustness with respect to varying demands 
	3.5.3. Robustness with respect to varying demands 
	d d>Cb. As explained below, the proposed VSL controller is robust with respect to different demands. If d<Cb, vehicles in the controlled segment would discharge and the densities in each section would be lower than the desired density. The VSLs in each section would increase, but saturated at vf. This situation is easy as due to the low demand congestion can be avoided or managed very well. When d>Cb and keeps increasing, according to Theorem 3.1, the controller lowers the speed limit in section 1 and limit
	In the analysis above, we assume that the demand 
	is a constant and 
	-
	-
	-

	1. We assume that Q =0 at steady state fow before the incident. Using the fow conservation 
	equation, we have Q= d − q(17) 
	˙
	1 

	where d is the traffc demand. The infow rate of section 1, qthen becomes 
	1 

	( 
	min{d, C,w(ρj,1 − ρ)},Q ≤ 0 
	1
	1
	1

	q= (18)
	1 

	min{C,w(ρj,1 − ρ)}, Q> 0 
	1
	1
	1

	Equation (18) assumes that as long as the queue upstream section 1 is not fully discharged, the infow rate of section 1 will be as high as the maximum fow rate that section 1 can receive under current ρ. Note that the introduction of Q does not make any difference to system (2) -(4) before and during the incident. It only tracks the growth and discharge of the queue upstream section 1. Therefore the stability of the closed-loop system (11) is not affected. Hence, with the combined VSL and LC controller, the
	-
	1
	ˆ

	Lemma 3.1. If the demand d>Cb, Qgrows faster than Q at steady state. In particular, 
	ˆ 

	Q− Q= −.Cb < 0 (19) 
	˙ 
	ˆ
	˙ 

	ˆ
	Proof Similar to Equation (17), we can estimate Qwith the following equation Q= d − qˆb, 
	ˆ 
	˙

	ˆ
	where Qis the growth rate of Q, qˆb is the outfow rate of section N without control. Since d> Cb, qconverges according to Theorem 3.1 to the desired fow rate Cb exponentially with the combined VSL and LC controller. qˆb would decrease to qˆb = (1−.)Cb due to capacity drop. Subqand qˆb in the above equations we obtain (19). i.e. at steady 
	˙ 
	ˆ
	1 
	-
	stituting the steady state values of 
	1 
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	qb under Different Demands — With Control, ---Without Control 
	Figure 8: Steady State 

	Figure
	state, the growth rate of Q is less than that of Q. Q.E.D. From the analysis above, it is clear that if the demand d increases from below the bottleneck caCb to greater than Cb and keeps increasing, the combined VSL and LC controller is able to protect the bottleneck from getting congested by suppressing the speed limit in section 1 therefore ρN can be stabilized at the desired value. On the other hand, in the no control case, the botρN increases and leads to capacity qb with respect to demand d. When d<Cb,
	ˆ
	-
	pacity 
	-
	-
	tleneck is directly exposed to the excessive demand, therefore 
	drop. Fig. 8 plots the steady state bottleneck fow 
	-



	3.6. Numerical Results 
	3.6. Numerical Results 
	3.6.1. Simulation Network 
	3.6.1. Simulation Network 
	We evaluate the combined VSL & LC control method using a microscopic and macroscopic model of the traffc fow on a 10 mile (16 km)-long southbound segment of I-710 freeway in California, United States (between I-105 junction and Long Beach Port), which has a static speed limit of 65 mi/h (105 km/h). We build this freeway network in VISSIM and calibrate the microscopic model using historical data provided by [70]. The car following and lane change behavior of the VISSIM model is calibrated and validated using
	-
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	Figure 9: Simulation Network 
	Figure
	certain lane. 
	3
	bottleneckisdividedto10500m-600msections.Thebars 
	thehighwayinFig.9are 
	where
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	VSLsignsandLCsignsdeployed.InVISSIM,incidents 
	simulatedbyplacingstoppedbus 
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	3.6.2.
	EvaluationoftheFeedbackLinearizationVSLController 
	Inthissection, 
	designand 
	evaluate 
	combinedVSLandLCcontrollerforthesimulationof 
	we
	a 
	tencywithrespecttoperformanceimprovements. 

	2 
	a real world highway segment. We use both macroscopic and microscopic traffc fow models and carry out Monte Carlo simulations for different incident scenarios in order to evaluate consis-
	We use the same network in Fig. 9 to evaluate the performance of the feedback linearization VSL controller. To demonstrate the performance, robustness and consistency of the proposed con
	-

	1 
	trollerunderdifferentincidentconditions,we 
	consider3differentscenarioswithdifferentinci-

	dent durations. We simulate each scenario under different demand fows. In each scenario, the incident occurs 5 minutes after simulation begins and lasts for 30 min in scenario 1, which simulates the case of an incident of moderate duration which may be due to an accident; for 10 min in scenario 2 which simulates the case of a short incident due to a vehicle breakdown or minor accident. The incident is not removed after occurrence in scenario 3, which simulates a long time lane closure or a construction site
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	The LC recommendation sign is deployed at the beginning of section 9 and section 10 in Fig. 9, 
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	(a) Vehicle Density (b) VSL Command 
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	Figure 10: Controller Performance without Constraints 
	Figure 10: Controller Performance without Constraints 


	Figure
	and recommends vehicles to change lanes by moving to the open lanes on either side. For the Cv = 10 mi/h, vmax = 65 mi/h, vmin = 10 Tc = 30 s. We choose λ= λ= ··· = λ= 20. We should note that as mentioned in Section 3.6.1, the capacity of the bottleneck with incident is 4500 veh/h. However, in the macroCb is calibrated to be vf × ρ= 5850 veh/h. The reasons for this difference are explained in the follow
	VSL controller, the following parameters are used: 
	mi/h, 
	1 
	2 
	9 
	-
	scopic model, we are assuming a strict triangular fundamental diagram and the capacity 
	e 
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	10 
	ing section. Since the logic of our VSL controller is to stabilize the density at the critical value, the accurate value of equilibrium density is more important than the value of fow rate. The densities and variable speed limits for the case of scenario 1 with demand d = 6500 veh/h are plotted in Fig. 10. For clarity of presentation, we only plot the densities in section 1, 9 and 10 and VSL commands in section 1 and 9. Fig. 10 demonstrates what is predicted by theory. That is the density in section 1 conve
	-
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	charging section converges to 
	10 
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	10 
	to the fundamental diagram in Fig. 7, the steady state fow would be a bit lower than the desired fow rate. However, the difference is negligible. The VSL command in section 1 converges to v= 30 mi/h and the VSL command in section 9 converges to v= 55 mi/h, which are not exactly the same as the desired values due to the application of the constraints. ρand ρconverge to the corresponding equilibrium point in less than 10 min while ρconverges to ρmuch slower (in about 20 min). The reason of this phenomenon is 
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	In Fig. 10, 
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	Figure 11: Controller Performance with Constraints 
	Figure 11: Controller Performance with Constraints 
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	Figure 12: System Behavior without Control 
	(a) Vehicle Densities without Control (b) Bottleneck Flow with and without Control 
	Figure
	Figure
	vdecreases to a low value and ρincreases rapidly, since because of the outfow of section 1, qis suppressed by v. Then the process of adjusting ρfrom the overshoot to ρtakes long time due to the low level of q. ρconverges fast and no overshoot is observed. This is because vis constrained by (14) -(16) thus fails to adjust ρback to ρafter overshooting, however, as stated before, the difference is negligible. Similarly, in vconverges to 30 mi/h in less than 10 min and stays at that value. vin the continuous ca
	ity of the section. After the incident occurs, 
	1 
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	On the other hand, from Fig. 11, we can see that with the constrained VSL, 
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	Fig. 11b, the VSL command 
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	Since the VSL commands only take whole 5 mi/h values due to (14), small variation of 
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	Figure 13: Growth and Discharge of the Queue 
	Figure 13: Growth and Discharge of the Queue 
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	control. During the incident, the fow rate decreases to less than 3000 veh/h due to capacity drop in the case of no control, while the bottleneck fow converges to 5600 veh/h with the combined VSL and LC controller. Again, the fow rate under control is higher than the real capacity of the bottleneck due to the assumption of triangular fundamental diagram. We use scenario 1 to examine the growth of the queue at the entrance to the controlled network. The numbers of vehicles in the queues are plotted in Fig. 1
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	Figure 14: Comparison of Macroscopic and Microscopic Models 
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	Microscopic with Control, ---Macroscopic with Control 
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	The deviation in speed is due to the following factors: 
	1. 
	1. 
	1. 
	1. 
	Modeling error. In the macroscopic model, we use a simplifed triangular fundamental diagram to model the discharging section, which implies that the fow speed at the desired 
	-


	vf. However, the actual speed would be lower than vf. Especially when the LC controller is applied, drivers are usually conservative when merging to the open lanes. 
	density is 


	2. 
	2. 
	Speed limit following delay. In the macroscopic model, we assume that the fow speed follows the speed limit exactly with no delay. However, in the microscopic model, the traffc fow needs time and space to accelerate to the desired speed limit. When vehicles change lanes, they do not adjust to new speeds instantaneously. 
	-


	3. 
	3. 
	Friction effect. The friction effect refects the empirically observed drivers’ fear of moving fast in the open lanes when an incident or slowly moving vehicles exist in neighboring lanes [71]. In microscopic simulation, this phenomenon is captured and has an effect when compared with the macroscopic simulations. 
	-



	Figure
	Figure
	Figure
	Figure 15: Fundamental Diagram with Combined Controller 
	Figure 15: Fundamental Diagram with Combined Controller 


	ρand qb at the equilibrium state under the combined VSL and LC controller in microscopic simulations. In Fig. 15, the negative slope part, i.e. the congested part of the fundamental diagram is not observed even when the demand d is higher than the capacity, since the controller protects the bottleneck from getting congested. For different levels of demand, the data points concentrate in different clusters which shows that the controller homogenizes the traffc fow. Furthermore, when d ≤ 3000 veh/h, the data 
	Fig. 15 demonstrates the relationship between 
	10 
	-
	-
	-
	close to the line with the slope 
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	Table 1: Evaluation Results of Scenario 1 
	Demand 
	Demand 
	Demand 
	6000 veh/h 
	6500 veh/h 

	Control 
	Control 
	No Control 
	LC Only 
	VSL Only 
	Control 
	Improvement 
	No Control 
	LC Only 
	VSL Only 
	Control 
	Improvement 

	Tt 
	Tt 
	18.85 
	17.12 
	18.95 
	16.85 
	-10.59% 
	20.72 
	17.67 
	21.21 
	16.83 
	-18.76% 

	s¯
	s¯
	11.16 
	2.45 
	3.61 
	1.90 
	-83.00% 
	12.10 
	2.55 
	3.78 
	1.91 
	-84.21% 

	c¯
	c¯
	4.00 
	4.75 
	4.74 
	3.78 
	-5.60% 
	4.67 
	5.54 
	5.88 
	4.31 
	-7.71% 

	NOx 
	NOx 
	1.56 
	1.49 
	1.61 
	1.49 
	-4.43% 
	1.64 
	1.58 
	1.60 
	1.53 
	-6.71% 

	CO2 
	CO2 
	558.56 
	543.22 
	577.59 
	536.01 
	-4.04% 
	589.46 
	556.47 
	605.59 
	537.21 
	-8.86% 

	Energy 
	Energy 
	178.65 
	173.67 
	184.76 
	171.40 
	-4.06% 
	186.78 
	177.93 
	193.73 
	170.31 
	-8.82% 

	PM25 
	PM25 
	0.049 
	0.048 
	0.047 
	0.050 
	0.66% 
	0.054 
	0.054 
	0.053 
	0.050 
	-7.73% 


	data of all vehicles that pass through the bottleneck during the above defned measuring peri
	-

	(b)Averagenumberofstops
	¯
	T 
	.
	t

	ods and calculate the following values: (a)Average travel time 
	¯ 
	¯ 
	¯ 

	s. 
	c. (d)Average fuel consumption rate. (e)Average CO2 emission rate. (f)Average NOx emission rate. (g)Average PM25 emission rate. Control effects on trafNv denote the number of vehicles 
	-
	-
	fc mobility are evaluated using the average travel time. Let 

	Tt is defned as 
	¯
	(c)Average number of lane changes 
	pass through the bottleneck during the measuring period. Average travel time 
	Nv
	X 
	i=1 
	¯T
	t 

	where ti,in and ti,out denote the time instant vehicle i enters and exits the network respectively. Note that our simulation network has enough space upstream of the controlled segment, therefore the time waiting in the queue is also counted. Control effects on traffc safety are evaluated by the average number of stops and average number of lane changes. Less stops and lane changes indicate smoother traffc fow and lower probability 
	s and
	¯ 
	(ti,out − ti,in)/Nv 
	= 
	of crash [16]. 
	defned
	¯
	are
	as
	c 

	Nv Nv
	XX 
	¯
	¯
	s = c = 
	i=1 i=1 
	where si, ci are number of stops and lane changes performed by vehicle i respectively. For environmental impact, we measure the average fuel consumption rate and the average emission rates of CO2, NOx, and PM25. These rates are uniformly defned as: 
	-

	Nv Nv
	XX 
	R = Ei/di i=1 i=1 
	where Ei denotes the fuel consumed or a certain type of emission generated by vehicle i in the di represents the distance traveled by vehicle i in the network, and R denotes the fuel consumption rate or the tailpipe emission rate of CO2, NOx, or PM25. The fuel consumption rate and emission rates are calculated using the MOVES model of the Environment Protection Agency (EPA) based on the speed and acceleration profle of each vehicle [72]. 
	highway network, 
	-

	si/Nv, 
	si/Nv, 
	ci/Nv 

	Figure
	Figure
	Table 2: Evaluation Results of Scenario 2 
	Demand 
	Demand 
	Demand 
	6000 veh/h 
	6500 veh/h 

	Control 
	Control 
	No Control 
	LC Only 
	VSL Only 
	Control 
	Improvement 
	No Control 
	LC Only 
	VSL Only 
	Control 
	Improvement 

	Tt 
	Tt 
	12.41 
	11.87 
	13.46 
	11.63 
	-6.25% 
	13.58 
	12.62 
	15.02 
	12.42 
	-8.54% 

	¯s
	¯s
	5.16 
	0.75 
	2.16 
	0.65 
	-87.37% 
	5.72 
	1.58 
	2.33 
	0.91 
	-84.09% 

	¯c
	¯c
	3.68 
	3.80 
	3.90 
	3.52 
	-4.31% 
	4.27 
	4.81 
	5.01 
	3.91 
	-8.33% 

	NOx 
	NOx 
	1.42 
	1.41 
	1.44 
	1.39 
	-2.48% 
	1.48 
	1.49 
	1.51 
	1.42 
	-4.05% 

	CO2 
	CO2 
	483.37 
	479.17 
	497.81 
	470.16 
	-2.73% 
	508.13 
	504.16 
	524.36 
	487.18 
	-4.12% 

	Energy 
	Energy 
	154.53 
	151.65 
	159.18 
	150.36 
	-2.70% 
	161.04 
	161.15 
	167.66 
	154.18 
	-4.26% 

	PM25 
	PM25 
	0.041 
	0.041 
	0.041 
	0.041 
	-0.77% 
	0.046 
	0.047 
	0.047 
	0.045 
	-2.17% 


	Table 3: Evaluation Results of Scenario 3 
	Demand 
	Demand 
	Demand 
	6000 veh/h 
	6500 veh/h 

	Control 
	Control 
	No Control 
	LC Only 
	VSL Only 
	Control 
	Improvement 
	No Control 
	LC Only 
	VSL Only 
	Control 
	Improvement 

	Tt 
	Tt 
	19.84 
	17.25 
	18.16 
	16.69 
	-15.89% 
	21.25 
	16.75 
	20.45 
	16.55 
	-22.13% 

	¯s
	¯s
	15.46 
	2.13 
	4.00 
	1.74 
	-88.75% 
	16.12 
	2.54 
	3.72 
	1.83 
	-88.65% 

	¯c
	¯c
	4.61 
	4.55 
	5.11 
	4.21 
	-8.60% 
	4.58 
	5.36 
	6.36 
	4.10 
	-10.48% 

	NOx 
	NOx 
	1.58 
	1.51 
	1.58 
	1.50 
	-4.95% 
	1.58 
	1.55 
	1.66 
	1.50 
	-4.95% 

	CO2 
	CO2 
	570.72 
	538.41 
	564.54 
	529.76 
	-7.18% 
	568.96 
	550.32 
	597.94 
	523.25 
	-8.04% 

	Energy 
	Energy 
	182.55 
	172.17 
	180.58 
	169.39 
	-7.21% 
	182.85 
	175.99 
	191.26 
	168.11 
	-8.06% 

	PM25 
	PM25 
	0.052 
	0.047 
	0.047 
	0.050 
	-3.74% 
	0.052 
	0.053 
	0.053 
	0.050 
	-3.74% 


	Table 1, 2 and 3 demonstrate the results of microscopic evaluation of all 3 scenarios under different traffc demands. From the results, we can see that the combined VSL & LC controller is able to provide signifcant improvements in traffc mobility, safety and environment. For traffc mobility, the proposed controller reduces the average travel time of each vehicle by 6.25% -22.13%. For traffc safety, the combined VSL and LC controller dramatically decreases the average number of stops by 83% -88.75% in differ
	-
	-
	-
	-
	-
	-
	-
	tion, fuel consumption rate is decreased by 4.26% -8.82%. The improvement in CO
	2 
	rate is approximately proportional to the improvement of fuel consumption rate, since CO
	2 
	main product of fuel burnt. The proposed controller reduces NO
	-

	Figure
	Figure
	The question how much of these improvements is due to VSL and LC controller alone is also answered using these simulation studies. From Table 1 -Table 3, we can see that when the LC controller is applied alone, all evaluation criteria improve except for the average number of lane Tt and s¯ are signifcant, while other criteria are only improved slightly. As discussed in Section 3.3, the LC controller is able to recommend upstream vehicles to make lane changes before stopping at the queue and avoid the capaci
	changes. The improvements on 
	-
	-
	-
	-


	4 Coordinated Variable Speed Limit, Ramp Metering and Lane Change Controller 
	4 Coordinated Variable Speed Limit, Ramp Metering and Lane Change Controller 
	The coordination of RM and VSL considers network mobility, on-ramp queues and fairness between the mainline and the ramps. The objective is to keep a balanced delay time between vehicles on the mainline and the ramps and avoid queues on the ramps from spilling back to the urban roads. In this section, we use an analytical method to design a coordinated VSL and RM controller based on a cell transmission macroscopic model with triangular fundamental diagram which together with a lane change controller guarant
	-
	-
	-
	-
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	(a) w/ and w/o LC (b) w/ and w/o VSL 
	Figure
	Figure 16: Effects of LC and VSL on Fundamental Diagrams 
	Figure 16: Effects of LC and VSL on Fundamental Diagrams 
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	4.1. System Modeling 
	4.1. System Modeling 
	4.1.1. Effect of VSL on the Fundamental Diagram 
	4.1.1. Effect of VSL on the Fundamental Diagram 
	Consider the highway bottleneck shown in Fig. 9. A bottleneck is introduced by an incident that blocks one lane. The speed limit upstream the bottleneck is the free fow speed vf = 65 mi/h. As discussed in Section 3.3, the lane change controller can avoid the capacity drop. However, as shown in Fig.16a, in the fundamental diagram with lane change control, the low ρd part is very vf , while the fow speed decreases as ρd approaches ρd,c. In the previous section we attribute the reduction of speed to modeling e
	Consider the highway bottleneck shown in Fig. 9. A bottleneck is introduced by an incident that blocks one lane. The speed limit upstream the bottleneck is the free fow speed vf = 65 mi/h. As discussed in Section 3.3, the lane change controller can avoid the capacity drop. However, as shown in Fig.16a, in the fundamental diagram with lane change control, the low ρd part is very vf , while the fow speed decreases as ρd approaches ρd,c. In the previous section we attribute the reduction of speed to modeling e
	close to its triangular approximation, which means that the fow speed is close to 
	-
	-
	ity when designing the VSL controller based on the triangular fundamental diagram as long as 
	ρ
	-
	-
	decreased despite under a lower speed limit as the critical density is increased from 
	-
	tion, that is, the speed deviation at 
	with microscopic simulations in Section 4.4. To conclude, under speed limit of 

	bottleneck can be modeled with high accuracy as equation 4 

	Figure
	Figure
	Figure
	Figure 17: Confguration of the Highway Segment 
	Figure 17: Confguration of the Highway Segment 




	4.2. Cell Transmission Model with Ramp Flows 
	4.2. Cell Transmission Model with Ramp Flows 
	The highway segment to be controlled by the coordinated VSL and RM controller is shown in Fig. 17. The bottleneck is introduced by a lane closure. The highway segment upstream the bottleneck is divided into N +1 sections, which are indexed as section 0 through section N. For i =0, 1, ..., N, ρi,qi,ri,si represent the vehicle density, mainline in-fow rate, on-ramp fow rate i ρi,si are measurable, ri are determined by i =0, 1, ..., N − 1vi denote the variable speed limit in section i. In section N, the speed 
	-
	and off-ramp fow rate in section 
	respectively, where 
	the RM controller, therefore also measurable. For 
	, 
	rate through the bottleneck. Let 

	1 
	ρ˙i =(qi − qi+1 + Ri), for i =0, 1, ..., N − 1 
	Li 

	(20)
	1 
	ρ˙N =(qN − qb + RN )
	LN 
	LN 

	The fow rate and bottleneck model is the same as (3) and (4). For the sake of completeness, we write the equations here. 
	q= min{d, C,w(ρj,0 − ρ)} 
	0 
	0
	0
	0

	qi = min{vi−1ρi−1,Ci,wi(ρj,i − ρi)},i =1,...,N 
	(21) 

	. 
	vdρN ,ρN ≤ ρd,c
	qb = (22)wb(ρj,d − ρN ),ρN >ρd,c 
	Figure
	Figure

	4.3. Controller Design 
	4.3. Controller Design 
	In this section, the coordinated VSL and RM controller is designed. We frst design the VSL controller by assuming that the RM control command is given. Then we choose the ramp metering strategy, ALINEA/Q, to manage the ramp fows and the queue lengths on ramps. 
	-

	4.3.1. Design of VSL 
	4.3.1. Design of VSL 
	The goals of designing the VSL controller include: (1) Given any type of RM controller, the VSL ρN in the discharging section at the critical value ρd,c, in order to keep qb at the highest level. (2) Homogenize the traffc fow upstream the bottleneck in order to improve the traffc safety and bring environmental benefts. Consider the subsystem which includes section 1 through section N. Defne the error states 
	controller should be able to coordinate with it and stabilize the density 
	-
	-

	ei = ρi − ρd,c, for i =1, 2, ..., N 
	We have 
	1 
	e˙i =(vi−1ρi−1 − viρi + Ri), for i =1, 2, ..., N − 1 
	(
	L
	i 

	(23) 
	vN −1ρN −1−vdρN +RN 

	,ρN ≤ 0 
	L
	N 

	e˙N = 
	vN −1ρN −1−wb(ρj,b−ρN )+RN 
	vN −1ρN −1−wb(ρj,b−ρN )+RN 

	,ρN > 0
	LN 
	Let 
	PN−λiLi+1ei+1 + vdρd,c − j=i+1 Rj 
	vi = , for i =0, 1, ..., N − 2 
	(24)
	( 
	ρ
	i 

	−λN−1LN eN +vdρN −RN 
	−λN−1LN eN +vdρN −RN 
	−λN−1LN eN +vdρN −RN 

	,ρN ≤ ρd,c
	ρN −1 

	vN−1 = 
	−λN−1LN eN +wb(ρj,b−ρN )−RN 
	−λN−1LN eN +wb(ρj,b−ρN )−RN 

	,ρN ≤ ρd,c
	,ρN ≤ ρd,c
	ρN −1 

	Substitute the controller (24) into the open-loop system (23), we have the following closed-loop system: 
	Li+1 
	Li+1 

	e˙i = −λi−1ei + λiei+1, for i =1, 2, ..., N − 2 ( 
	L
	i 

	≤ 0
	N−2N−1 LN−1 dN N (25)
	−λ
	e
	+ 
	L 
	N
	N 
	−1 
	(λ
	− v
	)e
	,ρ

	e˙N−1 = 
	−λN−2eN−1 + (λN−1 + wb)eN ,ρN > 0
	L
	N 

	LN −1 
	e˙N = −λN−1eN 
	Theorem 4.1. ei =0, for i =1, 2, ..., N is the unique and isolated equilibrium point of the closed-loop system (25) and is guaranteed to be globally exponentially stable. The rate of exponential convergence depends on the control design parameters λi, i =0, 1, ..., N − 1. 
	-

	The proof of Theorem 4.1 is similar to the proof of Theorem 3.1. According to Theorem 4.1, ρi is ρi,ss = ρd,c, i =1, ..., N. The steady state value of vi is vi,ss = 
	the steady state value of 

	PN 
	vd − Ri/ρd,c, i =1, ..., N − 1. Therefore, by applying the coordinated VSL and RM 
	vd − Ri/ρd,c, i =1, ..., N − 1. Therefore, by applying the coordinated VSL and RM 
	j=i+1 

	ρthrough ρN are stabilized and homogenized. The effect of a ramp fow is compenRi =0, then vi,ss = vd, for i =1, ..., N − 1. That is the upstream speed limit converges to vd. By adjusting the value of vd, we can guarantee that the shockwave resulted by speed deviation between actual traffc fow and the triangular fundamental diagram is eliminated. Now let us consider the dynamics of ρand v. Since qconverges to vdρd,c, if the demand d> vdρd,c, ρwill increase. Once ρ>ρj,0 − d/w, we have 
	controller, 
	1 
	-
	sated by its upstream VSL and does not affect downstream traffc. If 
	0 
	0
	1 
	0 
	0 
	0


	Figure
	Figure
	1 
	ρ˙=(w(ρj,0 − ρ) − vρ+ R) (26)
	0 
	0
	0
	0
	0 
	0

	L
	L
	0 

	Substitute (24) into (26), we have 
	N
	X
	1 
	ρ˙=(w(ρj,0 − ρ) − vdρd,c + Rj )
	0 
	0
	0

	L
	L
	0 

	j=0 
	PN
	Assume that Rj is constant, then 
	j=0 

	PN 
	j=0 Rj − vdρd,c
	ρ= ρj,0 + 
	ρ= ρj,0 + 
	0 

	w
	0 


	PN
	is a stable equilibrium point. As long as <vdρd,c, ρwill not exceed the jam density 
	0 

	j=0 j 
	R

	ρj,0 and vwill not go negative, thus the VSL controller is feasible. For driver’s acceptance and safety, we as well apply the constraints (14) -(16) to the VSL controller (24). 
	0 
	-


	4.3.2. Design of the RM Controller 
	4.3.2. Design of the RM Controller 
	According to Theorem 4.1, the VSL controller (24) can stabilize the system and improve the mobility as long as the net ramp fow is lower than the bottleneck capacity. It seems that RM control is unnecessary. However, if no RM is applied and large ramp fows fush into the mainline, the merging of ramp fows will severely disturb the mainline fow. Furthermore, when the net ramp fow is high, the VSL controller (24) will suppress the mainline fow in order to spare the capacity for the ramp fows. That is, without 
	According to Theorem 4.1, the VSL controller (24) can stabilize the system and improve the mobility as long as the net ramp fow is lower than the bottleneck capacity. It seems that RM control is unnecessary. However, if no RM is applied and large ramp fows fush into the mainline, the merging of ramp fows will severely disturb the mainline fow. Furthermore, when the net ramp fow is high, the VSL controller (24) will suppress the mainline fow in order to spare the capacity for the ramp fows. That is, without 
	-
	-
	i
	d
	i
	q
	-

	t = kTc. The fnal RM rate ri(k) is the maximum of the two. i.e. 
	stream density and the queue length on the ramp at each time step 


	Figure
	Figure
	r(k)= r(k − 1) + βd[(ρd,c − ρi(k))] r(k)= βq(w− wi(k)) + di(k − 1) (27) ri(k) = max{r (k),r(k)}
	i
	d
	i
	q
	i
	r 
	d
	q

	ii 
	where ρi(k) is the density in the highway section that connects to ramp i, wi(k) is the queue 
	r
	i kdi(k − 1) is the demand from ramp i within time step k − 1, wis the reference queue length of ramp i. r(k) is an integral feedback controller that regulates ρi(k) to be close to ρd,c, which helps maintain the vehicle density on mainline at the desired equilibrium value. r(k) adjusts the RM rate in order to prevent the queue length from being too large, 
	length on ramp 
	at time step 
	, 
	i 
	i
	d
	-
	i
	q

	r
	i.e. if wi(k) is larger than w, the RM rate will increase to discharge excessive vehicles in the queue and newly arrived vehicles. Since the fnal RM rate is the maximum of the two, the ramp fow will get the priority to pass the bottleneck if the ramp queue is large, while the mainline fow will get the priority if the vehicle density on the mainline is high. In this way, the ALINEA/Q strategy maintains the fairness between the ramp fows and the mainline fow and avoids the ramp queues from piling up towards t
	i 



	4.4. Numerical Simulations 
	4.4. Numerical Simulations 
	In this section , we use the microscopic simulator VISSIM to carry out Monte Carlo simulations to evaluate the performance of the coordinated VSL, RM and lane change control on traffc mobility, safety and the environment. 
	-

	4.4.1. Scenario Setup 
	4.4.1. Scenario Setup 
	We evaluate the proposed controller on the highway segment in Fig. 9. To coordinate with the ramps, we divide the highway segment in to 8 sections, the VSL signs are deployed at the beginning of section 0 through 6. An incident blocks the middle lane at the end of section 7 and creates a bottleneck. 4 on-ramps, which are equipped with RM, and 5 off-ramps are connected to the highway segment. The lane change control is deployed at the beginning of section 7. The incident occurs at 5 minutes after simulation 
	-
	-
	-


	4.4.2. Simulation Results 
	4.4.2. Simulation Results 
	ρand ρ, which are the vehicle density of the discharging section and ρstarts increasing im
	Fig. 19 shows the curve of 
	7 
	0
	the frst VSL controlled section, respectively. When there is no control, 
	7 
	-
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	Figure 18: Geometry of Simulation Network 
	Figure 18: Geometry of Simulation Network 


	(a) Density in section 7 (b) Density in section 0 
	Figure
	Figure 19: Vehicle Densities w/ and w/o Control —with control, —no control 
	Figure 19: Vehicle Densities w/ and w/o Control —with control, —no control 


	Figure
	Figure 20: Density Contours 
	(a) vd = 40 mi/h (b) vd = 65 mi/h 
	Figure
	mediately as the incident occurs at t =5 min. In addition the shockwave propagates upstream, which makes ρstarts increasing at t = 25 min and reaches 500 veh/mi. The high density in section 0 does not discharge until 15 min after the incident is removed. When the coordinated conρincreases slightly and is stabilized at 110 veh/mi. ρincreases immediately after the incident since vdecreases to reduce the fow into downstream sections and is stabilized at around 400 veh/h which is lower than that without control
	0 
	-
	-
	troller is applied, 
	7 
	0 
	0 
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	(a) Queue length on r(b) Queue length on r
	11 
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	Figure
	Figure 21: Queue Length w/ and w/o Control —VSL + RM, —RM only 
	Figure 21: Queue Length w/ and w/o Control —VSL + RM, —RM only 


	Fig. 20 demonstrates the contour plot of vehicle densities with respect to time and space with different values of vd. When vd = 40 mi/h, high density is held in section 0 during the incident, while downstream sections are highly homogenized. ρis higher than ρd,c at the beginning of the incident as the ramp fows rand rfush in but then discharged under control. The density in ρd,c as vehicles receive the lane change recommendations and make lane changes thus slightly disturbs upstream fow. When vd = 65 mi/h,
	2 
	11 
	12 
	section 6 is slightly higher than 
	propagates upstream, vehicle densities converge to 
	Fig. 21 shows the queue length on ramp 
	11 
	3
	-
	-
	-
	-
	ate traffc mobility, we use: (a) average travel time 
	¯ 
	-
	-
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	Table 4: Evaluation Results 
	Control Type 
	Control Type 
	Control Type 
	No Control 
	RM + VSL 
	Improvement 

	t (min)¯T
	t (min)¯T
	15 
	11 
	27% 

	¯s
	¯s
	23 
	4 
	82% 

	¯c
	¯c
	5.1 
	4.6 
	10% 

	CO2 (g/veh/mi) 
	CO2 (g/veh/mi) 
	585 
	538 
	8% 

	Fuel (g/veh/mi) 
	Fuel (g/veh/mi) 
	187 
	172 
	8% 


	ment is signifcant. The average travel time is reduced by about 27% as the bottleneck throughput is increased. For traffc safety, the number of stops dramatically decreased by 81% as the lane change control prevented vehicles from stopping at the bottleneck and waiting for lane changes. The 10% reduction in number of lane changes is contributed by both homogenization of mainline fow and the regulated merging behavior of ramp fows. For the environment metrics, the reductions of CO2 emission and energy consum
	-


	5 Comparison of Feedback Linearization and Model Predictive Strategies in Variable Speed Limit Control 
	5 Comparison of Feedback Linearization and Model Predictive Strategies in Variable Speed Limit Control 
	Given the fact that LC control is able to relieve or eliminate the capacity drop, one important question arising at this point is that if other VSL control strategies are combined with the LC control, will the system performance exceed the performance under the FL controller? Intuitively, since MPC control follows an optimization based routine, it should provide the ‘optimal’ performance to some extent. However, FL controller guarantees exponential stability of the equilibrium point with highest bottleneck 
	-
	-
	-
	-
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	5.1. Nonlinear Model Predictive Control 
	5.1. Nonlinear Model Predictive Control 
	Model predictive control strategy generates the control command at each control step by solving a fnite horizon optimal control problem in a receding horizon manner. In this section, we formulate the cost function of the MPC problem as the quadratic error of the states of system (9). To take into consideration the vehicles that are blocked upstream the VSL controlled segment, we augment the system by add a new state Q, that is 
	-

	Q= d − q, (28) 
	˙
	0

	with Q =0 at t =0. Therefore, if the number of vehicles upstream of section 0 is greater than the number at time 0, Q> 0, otherwise Q ≤ 0. We should note here that the introduction of Q is only for the purpose of evaluating the TTS. Both the FL and MPC controllers are implemented based on system (9). The performance metric TTS is defned as follows: 
	Z TN
	X 
	TTS = Q(t)+ ρi(t)Li dt (29) 
	0 
	i=0 
	The open-loop highway system (9) can be implicitly expressed as 
	e˙= f(e, u) (30) 
	Here we formulate the problem of fnding the VSL commands u(·) that try to maintain system 
	(30) at the equilibrium point as the following fnite-horizon constrained optimal control problem (OCP): 
	Z 
	kTc+Tp 
	minimize e(τ)Ru(τ )dτ
	T 
	˜ 

	Qe(τ )+ u(τ )
	T 
	˜ 

	u(·) 
	kTc 
	e(kTc)= eˆ(kTc) (31) e˙= f(e, u), ∀τ ∈ [t, t + Tp] 
	subject to 

	vmin − ve ≤ u(τ) ≤ vmax − ve, 
	where t is the current control sampling instant in time, eˆ(t) is the measurement on error states taken at that instant, Qand Rare weighting matrices on error and control input, respectively, whereas Tp is the prediction horizon. The optimization problem is solved at the beginning of each kTc, with eˆ(kTc) as the initial condition. Constraint (16) has already been included in the constraints of the optimization problem. (14) and (15) are also applied to the MPC VSL commands before applied to the system. Due
	˜ 
	˜ 
	control step 
	-
	-
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	Figure 22: Simulation System 
	Figure 22: Simulation System 



	5.2. Numerical Simulation 
	5.2. Numerical Simulation 
	In this section, macroscopic simulation is used to evaluate the performance and robustness of the FL and NMPC schemes combined with LC. 
	5.2.1. Scenario setup 
	5.2.1. Scenario setup 
	The FL and MPC controllers have evaluated on the network shown in Fig. 9 In our simulation, the incident happens 5 minutes after the simulation starts, and it lasts for 30 min. The nominal demand is 6000 veh/h. The desired equilibrium point of this network is calibrated to be: 
	e0 
	ρ

	= ·· 
	= 278 veh/mi 
	e2
	e
	ρ
	ρ
	= 

	1 
	v 
	e7 
	ρ
	· 
	= 

	= 15.8 mi/h 
	= 110 veh/mi 
	e
	v
	0 
	ee e
	= ·· 
	= 40 mi/h
	= v 
	· = v
	1
	2
	7 
	For the FL controller, we choose λi = 50 for i =0, 1,..., 6. The NMPC controller is implemented using the direct multiple shooting method via the CasADi toolbox [75] in MATLAB 
	-

	8.5.0 (R2015a), on a 64-bit Windows PC with 3.4-GHz Intel Core i7 processor and 8-GB RAM, where IPOPT [76] is used for solving the NLPs. In our simulation, we choose the prediction horizon Tp = 10 min, which is much greater than the control time step Tc = 30 s. Weight matrices are chosen as Q= I and R=0.1I, with I denoting the identity matrix of appropriate dimensions. The computation time of NMPC is around 0.35 seconds, whereas it is negligible for FL. The NMPC scheme is still computationally tractable, as
	-
	˜
	˜
	-
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	Figure 23: Simulation System 
	Figure 23: Simulation System 



	5.2.2. Performance and Robustness Analysis with Macroscopic Simulations 
	5.2.2. Performance and Robustness Analysis with Macroscopic Simulations 
	To compare the performance and robustness of the FL and MPC VSL controllers, we evaluate the following criteria for the two controllers: 1) Total time spent (TTS) as defned in (29), and sensitivity of TTS with respect to 2) perturbation on traffc demand, 3) perturbation on model parameters and 4) measurement noise. In the simulation, the FL and MPC controllers are synthesized with the ideal model (30), but the control command are applied on a perturbed model. The structure of the simulation system is shown 
	To compare the performance and robustness of the FL and MPC VSL controllers, we evaluate the following criteria for the two controllers: 1) Total time spent (TTS) as defned in (29), and sensitivity of TTS with respect to 2) perturbation on traffc demand, 3) perturbation on model parameters and 4) measurement noise. In the simulation, the FL and MPC controllers are synthesized with the ideal model (30), but the control command are applied on a perturbed model. The structure of the simulation system is shown 
	-
	-
	-
	23, we respectively add up to 
	perturbation on the nominal value of 
	-
	noise, we use Gaussian white noise with different levels of standard deviation up to 
	σ =0.1ρ
	e 
	7 
	-
	-
	-
	-
	-

	Figure 25: Performance sensitivity of no control (black), FL (blue), and NMPC (red) to perturbations on demand d. 
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	ρwith FL and MPC 
	Figure 24: 
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	Figure 26: Performance sensitivity of no control (black), FL (blue), and NMPC (red) to Cb. 
	perturbations on 

	Figure
	Figure 27: Performance sensitivity of no control (black), FL (blue), and NMPC (red) to ρd,c. 
	perturbations on 

	Figure
	Figure
	Figure
	Figure 28: Performance sensitivity of FL (blue) and NMPC (red) to increasing levels of standard deviation in measurement noise. 
	Figure
	turbation, the performance of FL and MPC controller are similar. But the TTS of FL is always slightly lower than that of MPC, which shows that MPC fails to beat FL in TTS although the control commands are generated by solving the optimization problem in receding horizon fashion. In fgures 26 and 27, the change in TTS is plotted with respect to different values of perturbation on Cb and ρd,c, respectively. These results show that both controllers achieve signifcant improvements over the no control case and a
	-
	-
	amount of uncertainty in these model parameters. With perturbation on 
	-


	5.2.3. Performance and Robustness Analysis with Microscopic Simulations 
	5.2.3. Performance and Robustness Analysis with Microscopic Simulations 
	Table 5 shows the microscopic simulation results with calibrated model parameter set: 
	w= 14 mi/h,wb = 40 mi/h,ρd,c = 110 veh/mi 
	1 

	The performance of the MPC controller is similar to that of the FL controller. 
	Figure
	Integrated Traffc Flow Control in a Connected Network 
	Figure
	Table 5: Evaluation Results with Original Parameters 
	Table
	TR
	TTT (hr) 
	Stops 
	LC 
	CO (g/veh/mi) 
	Nox (g/veh/mi) 
	CO2 (g/veh/mi) 
	Energy (g/veh/mi) 

	No Control 
	No Control 
	mean ± std 
	1270 ± 42 
	23.2 ± 1.3 
	6.6 ± 0.2 
	3.4 ± 0.1 
	1.8 ± 0.1 
	605 ± 20 
	194 ± 6 

	Improvement 
	Improvement 
	-
	-
	-
	-
	-
	-
	-

	LC Only 
	LC Only 
	mean ± std 
	1075 ± 40 
	10.5 ± 0.9 
	5.9 ± 0.3 
	3.4 ± 0.1 
	1.7 ± 0.1 
	552 ± 16 
	176 ± 5 

	Improvement 
	Improvement 
	15% 
	55% 
	11% 
	0% 
	6% 
	9% 
	9% 

	FL 
	FL 
	mean ± std 
	1036 ± 36 
	9.9 ± 1.3 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	529 ± 13 
	169 ± 4 

	Improvement 
	Improvement 
	18% 
	57% 
	17% 
	12% 
	11% 
	13% 
	13% 

	MPC 
	MPC 
	mean ± std 
	1018 ± 41 
	8.7 ± 1.2 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	525 ± 15 
	168 ± 5 

	Improvement 
	Improvement 
	20% 
	63% 
	17% 
	12% 
	11% 
	13% 
	13% 


	Table 6: Evaluation Results under Different w
	1 

	Table
	TR
	TTT (hr) 
	Stops 
	LC 
	CO (g/veh/mi) 
	Nox (g/veh/mi) 
	CO2 (g/veh/mi) 
	Energy (g/veh/mi) 

	FL 
	FL 
	w1=9 
	mean ± std 
	1036 ± 36 
	9.9 ± 1.3 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	529 ± 13 
	169 ± 4 

	Improvement 
	Improvement 
	18% 
	57% 
	17% 
	12% 
	11% 
	13% 
	13% 

	w1=14 
	w1=14 
	mean ± std 
	1036 ± 36 
	9.9 ± 1.3 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	529 ± 13 
	169 ± 4 

	Improvement 
	Improvement 
	18% 
	57% 
	17% 
	12% 
	11% 
	13% 
	13% 

	w1=6 
	w1=6 
	mean ± std 
	1036 ± 36 
	9.9 ± 1.3 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	529 ± 13 
	169 ± 4 

	Improvement 
	Improvement 
	18% 
	57% 
	17% 
	12% 
	11% 
	13% 
	13% 

	MPC 
	MPC 
	w1=9 
	mean ± std 
	1096 ± 55 
	12.3 ± 2.4 
	5.5 ± 0.2 
	3.1 ± 0.1 
	1.6 ± 0.1 
	533 ± 16 
	170 ± 5 

	Improvement 
	Improvement 
	14% 
	47% 
	17% 
	9% 
	11% 
	12% 
	12% 

	w1=14 
	w1=14 
	mean ± std 
	1018 ± 41 
	8.7 ± 1.2 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	525 ± 15 
	168 ± 5 

	Improvement 
	Improvement 
	20% 
	63% 
	17% 
	12% 
	11% 
	13% 
	13% 

	w1=6 
	w1=6 
	mean ± std 
	1226 ± 61 
	12.1 ± 1.9 
	5.6 ± 0.3 
	3.1 ± 0.1 
	1.6 ± 0.1 
	546 ± 20 
	174 ± 6 

	Improvement 
	Improvement 
	3% 
	48% 
	15% 
	9% 
	11% 
	10% 
	10% 


	Table 7: Evaluation Results under Different ρd,c 
	Table
	TR
	TTT (hr) 
	Stops 
	LC 
	CO (g/veh/mi) 
	NOx (g/veh/mi) 
	CO2 (g/veh/mi) 
	Energy (g/veh/mi) 

	FL 
	FL 
	ρd,c = 100 
	mean ± std 
	1024 ± 44 
	8.8 ± 2 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	528 ± 14 
	169 ± 5 

	Improvement 
	Improvement 
	19% 
	62% 
	17% 
	12% 
	11% 
	13% 
	13% 

	ρd,c = 110 
	ρd,c = 110 
	mean ± std 
	1036 ± 36 
	9.9 ± 1.3 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	529 ± 13 
	169 ± 4 

	Improvement 
	Improvement 
	18% 
	57% 
	17% 
	12% 
	11% 
	13% 
	13% 

	ρd,c = 120 
	ρd,c = 120 
	mean ± std 
	1031 ± 43 
	9.4 ± 2.2 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	526± 15 
	168 ± 4 

	Improvement 
	Improvement 
	19% 
	59% 
	17% 
	12% 
	11% 
	13% 
	13% 

	MPC 
	MPC 
	ρd,c = 100 
	mean ± std 
	1236 ± 41 
	11.4 ± 0.3 
	5.5 ± 0.2 
	3.1 ± 0.1 
	1.6 ± 0.1 
	544 ± 16 
	174 ± 5 

	Improvement 
	Improvement 
	3% 
	51% 
	17% 
	9% 
	11% 
	10% 
	10% 

	ρd,c = 110 
	ρd,c = 110 
	mean ± std 
	1018 ± 41 
	8.7 ± 1.2 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	525 ± 15 
	168 ± 5 

	Improvement 
	Improvement 
	20% 
	63% 
	17% 
	12% 
	11% 
	13% 
	13% 

	ρd,c = 120 
	ρd,c = 120 
	mean ± std 
	1242 ± 35 
	11.6 ± 1.0 
	5.5 ± 0.2 
	3.1 ± 0.1 
	1.6 ± 0.1 
	542 ± 17 
	173 ± 6 

	Improvement 
	Improvement 
	2% 
	50% 
	17% 
	9% 
	11% 
	10% 
	11% 


	Table 8: Evaluation Results under Different wb 
	Table
	TR
	TTT (hr) 
	Stops 
	LC 
	CO (g/veh/mi) 
	Nox (g/veh/mi) 
	CO2 (g/veh/mi) 
	Energy (g/veh/mi) 

	FL 
	FL 
	wb=20 
	mean ± std 
	1025 ± 36 
	9.6 ± 1.0 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	527 ± 13 
	169 ± 4 

	Improvement 
	Improvement 
	19% 
	59% 
	17% 
	12% 
	11% 
	13% 
	13% 

	wb=40 
	wb=40 
	mean ± std 
	1036 ± 36 
	9.9 ± 1.3 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	529 ± 13 
	169 ± 4 

	Improvement 
	Improvement 
	18% 
	57% 
	17% 
	12% 
	11% 
	13% 
	13% 

	wb=60 
	wb=60 
	mean ± std 
	1042 ± 34 
	10.2 ± 1.8 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	526 ± 15 
	168 ± 4 

	Improvement 
	Improvement 
	18% 
	56% 
	17% 
	12% 
	11% 
	13% 
	13% 

	MPC 
	MPC 
	wb=20 
	mean ± std 
	1098 ± 58 
	12.4 ± 2.4 
	5.5 ± 0.2 
	3.1 ± 0.1 
	1.6 ± 0.1 
	533 ± 16 
	170 ± 5 

	Improvement 
	Improvement 
	14% 
	47% 
	17% 
	9% 
	11% 
	12% 
	12% 

	wb=40 
	wb=40 
	mean ± std 
	1018 ± 41 
	8.7 ± 1.2 
	5.5 ± 0.2 
	3.0 ± 0.1 
	1.6 ± 0.1 
	525 ± 15 
	168 ± 5 

	Improvement 
	Improvement 
	20% 
	63% 
	17% 
	12% 
	11% 
	13% 
	13% 

	wb=60 
	wb=60 
	mean ± std 
	1092 ± 53 
	12.3 ± 2.2 
	5.5 ± 0.2 
	3.1 ± 0.1 
	1.6 ± 0.1 
	529 ± 15 
	169 ± 5 

	Improvement 
	Improvement 
	14% 
	47% 
	17% 
	9% 
	11% 
	13% 
	13% 
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	51 
	Figure
	Table 6 -Table 8 demonstrate the simulation results of MPC and FL controller under different values of model parameters. From the result, we can see that the FL controller is robust with rew, wb and ρd,c. As to MPC, the mobility performance is signifwand ρd,c, which both change the value of the equilibwb which does not change the equilibrium point and can be compensated by the control input. 
	-
	spect to the perturbations on 
	1
	-
	cantly adversed by the perturbations on 
	1 
	-
	rium point. But MPC is robust with respect to the perturbations on 


	6 Stability Analysis of Cell Transmission Model under All Operating Conditions 
	6 Stability Analysis of Cell Transmission Model under All Operating Conditions 
	-

	In Section 3 and Section 4, we designed a coordinated variable speed limit, ramp metering and lane change control based on the frst-order cell transmission model. However, the analysis of dynamical behavior and stability properties of the open-loop cell transmission model which takes capacity drop into consideration is missing from the previous work, which makes it diffcult for us to perform an analytical comparison of the open-loop and closed-loop performance of the VSL controlled cell transmission model. 
	-
	-
	-
	-
	-
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	6.1. Stability of Traffc Flow in a Single-Section Road Segment 
	6.1. Stability of Traffc Flow in a Single-Section Road Segment 
	-

	Consider a single road section of unit length with an infow qand outfow q, expected to meet a demand of fow d as shown in Fig. 29. We assume that the vehicle density ρ is uniform along the 
	1 
	2

	Figure
	Figure 29: Single Road Section 
	Figure 29: Single Road Section 


	section, i.e. it is independent of distance from the entrance to the exit of the section and does not vary across the lanes in the vertical direction. Under these assumptions, the evolution of ρ with respect to time is given by the following differential equation: 
	ρ˙= q− q, 0 ≤ ρ(0) ≤ ρ, (32) 
	1 
	2
	j 

	where 
	q= min{d, C, w(ρ− ρ)},min{vf ρ, w˜(˜ρ− ρ), (1 − .(ρ))Cd} if Cd <C 
	1 
	j 
	( 
	j 

	q= , 
	2 

	min{vf ρ, w˜(˜ρ− ρ),Cd} otherwise vf ρc = w(ρ− ρc)= w˜(˜ρ− ρc)= C, 
	j 
	j 
	j 

	(33) 
	0 <ρc <ρ, 0 <w˜ < w,vf > 0,
	j 

	⎧ 
	Cd
	Cd

	⎨
	0 if 0 ≤ ρ ≤ f ,
	.(ρ)= v

	⎩ 
	.otherwise and the constants in equation (32),(33) are defned as follows: 
	0 

	• 
	• 
	• 
	C: the capacity of the road section. 

	• 
	• 
	w: the back propagation speed. 

	• 
	• 
	ρ: jam density, the highest density possible, at which q=0. 
	j 
	1 


	• 
	• 
	vf : free fow speed of the road section. 

	• 
	• 
	w˜: the rate that the outfow qdecreases with ρ, when ρ ≥ ρc. 
	2 


	• 
	• 
	ρ˜: the jam density associated with outfow q. 
	j 
	2


	• 
	• 
	ρc: the critical density of the road section, at which vf ρc = w(ρ− ρc)= w˜(˜ρ− ρc)= C. 
	j 
	j 


	• 
	• 
	Cd: the downstream capacity. 


	Figure
	Figure
	qis dictated by the upstream demand d as well as the potential ability of the section to absorb traffc fow, which is the value min{C, w(ρ− ρ)}. If ρ ≤ ρc, the section can absorb as much fow as the capacity C, however if ρ>ρc, the section’s ability to absorb upstream fow decreases with ρ at a rate w. When ρ = ρ, q=0 as the section is comqis dictated by the ability of the section to send traffc fow to ρ ≤ ρc, the section’s ability to send traffc fow increases with ρ, but when ρ>ρc, this ability decreases with
	In equation (33), the infow 
	1 
	-
	j 
	j 
	1 
	-
	pletely congested. The outfow 
	2 
	downstream and the downstream capacity. When 

	w>w˜, we have w˜(˜ρ− ρ) >w(ρ− ρ) for all ρ>ρc, which captures the phenomenon that if the downstream segment has enough capacity, the density in a congested road section upstream will ρc. The capacity of the downstream segment is Cd. If Cd <C and ρ ≤ , then the outfow q= vf ρ can increase up to Cd. However, when 
	j 
	j 
	eventually decrease to a value less than or equal to 
	C
	d 
	2 

	vf ρ> , the section generates more fow than Cd, a queue will form at the outlet, which may 
	C
	d 

	vf 
	cause forced lane changes which in turn reduce the fow speed leading to the reduction of fow to lower than the capacity Cd i.e. to (1 − .)Cd [5, 26]. This phenomenon is known as capacity drop. The original CTM is modifed to include the capacity drop effect as shown in equation (33). .=0 is the CTM of [80]. The .> 0 denotes the level of capacqis restricted from reaching the capacity Cd. Note that capacity drop can only occur when the downstream capacity Cd is lower than the capacity of the section C. In syst
	0
	The model (32) -(33) with 
	0 
	0 
	-
	ity drop, in which case, despite the availability of fow, 
	2 
	the downstream capacity 
	-
	0 

	5
	5

	S 
	Ωi, i =1, 2, ..., 5. The union of these sets Ωi, as shown in Fig. 30, 
	represented by the sets 

	i=1 
	covers all possible situations. Let I =(Cd, C, d, .) be the state of the road section. We analyze I ∈ Ωi, i =1, 2, ..., 5. Theorem 
	0
	the stability properties of the dynamical model (32)-(33) when 

	6.1 presents the results of the analysis. 
	6.1 presents the results of the analysis. 
	Theorem 6.1. For constant but otherwise arbitrary demand d, we have the following results: 
	a) 
	a) 
	a) 
	I ∈ Ω. Then ∀ρ(0) ∈ [0,ρ], ρ(t) converges exponentially fast to . 
	Let 
	1
	j 
	d 


	b) 
	b) 
	I ∈ Ω. Then 
	Let 
	2



	vf 
	Cd d (1−.
	Cd d (1−.
	0
	)Cd

	•∀ρ(0) ∈ [0, ], ρ(t) converges exponentially fast to = . 
	vf vf vf 
	Figure
	Figure
	Figure
	Figure 30: All Possible Operating Scenarios 
	Figure 30: All Possible Operating Scenarios 


	•∀ρ(0) ∈ (,ρ− ], ρ(t)= ρ(0), ∀t ≥ 0. 
	C
	v
	f
	d 
	j 
	w
	d 

	j (1−.)Cd
	= ρ
	− 
	0

	•∀ρ(0) ∈ (ρ− ,ρ], ρ(t) converges exponentially fast to ρ− . 
	j 
	d 
	j 
	j 
	d 

	w ww 
	c) I ∈ Ω. Then 
	Let 
	3

	•∀ρ(0) ∈ [0, ], ρ(t) converges exponentially fast to . 
	C
	d 
	d 

	vf vf 
	•∀ρ(0) ∈ (,ρ], ρ(t) converges exponentially fast to ρ− . 
	C
	v
	f
	d 
	j 
	j 
	(1−.
	w 
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	)C
	d 

	d) 
	d) 
	d) 
	I ∈ Ω. Then ∀ρ(0) ∈ [0,ρ], ρ(t) converges exponentially fast to ρ− . 
	Let 
	4
	j 
	j 
	(1−.
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	)C
	d 


	e) 
	e) 
	I ∈ Ω. Then ∀ρ(0) ∈ [0,ρ], ρ(t) converges exponentially fast to . 
	Let 
	5
	j 
	min{d,C} 



	vf 
	Proof. a) When I ∈ Ω, we plot the relationship of q,qgiven by equation (33) in Fig. 31. From 
	1
	1
	2 
	Figure 31: Fundamental Diagram for 
	I 
	∈ 
	Ω
	1 

	Figure
	the density equation (32), the equilibrium points of the system are the values of ρ for which ρ˙= 0, which happens when q= q. It is clear from Fig. 31 that the only intersection of qand qis the point ρ= , which implies that this is the only equilibrium of ρ in the region [0,ρ] of 
	1 
	2
	1 
	2 
	e 
	d 
	j 

	vf 
	feasible values of ρ. We defne the Lyapunov function 
	f )
	(ρ 
	− 
	d/v
	2 

	V (ρ)= ,
	2 
	Figure
	Figure
	whose time derivative 
	dd
	˙
	V (ρ)=(ρ − )˙ρ = −(ρ − )(q− q). vf vf 
	2 
	1

	We show in Appendix A.1 that 
	V≤−α(ρ − ), vf 
	˙ 
	d 
	2 

	(1−.
	(1−.
	0
	)C
	d
	−d (˜w−w)[ρc−(ρ
	j 
	− 
	d 
	)]

	w
	w

	where α = min{vf ,, } > 0. Hence ρ converges exponentially fast to 
	ρ−d/vf ρ−d/vf 
	j 
	j 

	with a rate greater than or equal to α for all possible initial conditions in [0,ρ] [81]. The rate 
	d 
	j 

	vf 
	of convergence is guaranteed to be greater than or equal to α as it is clear from the value of V and 
	˙
	V . 
	b) I ∈ Ω, the plot of q,qgenerated from equation (33) is given in Fig. 32. In this case, 
	When 
	2
	1
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	Figure 32: Fundamental Diagram for 
	Figure 32: Fundamental Diagram for 
	Figure 32: Fundamental Diagram for 
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	qand qintersect at one point ρ = and q= qfor all ρ ∈ (,ρ− ]. Therefore, we 
	1 
	2 
	d 
	1 
	2 
	C
	d 
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	vf vf w have one isolated equilibrium point ρ= and an equilibrium manifold which is the interval 
	e 
	1 
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	vf (,ρ− ]. 
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	From Fig. 32, we know that ∀ρ ∈ [0, ],q= (1 − .)Cd = d and q= vf ρ which gives 
	C
	d 
	1 
	0
	2 

	vf 
	Cd
	Cd

	ρ˙= −vf ρ + d, ∀ρ(0) ∈ [0, ], vf 
	whose solution is 
	d dCd
	−vf t 
	≤

	ρ(t)= +(ρ(0) − )e. vf vf vf 
	Cd Cd
	Cd Cd

	Hence ∀ρ(0) ∈ [0, ] we have ρ(t) ∈ [0, ], ∀t ≥ 0 and according to the solution above, ρ(t)
	vf vf 
	d (1−.
	0
	)Cd

	converges exponentially fast to = . 
	vf vf 
	For ρ(0) ∈ (,ρ− ], we have q= q, therefore ρ˙=0, which implies that ρ(t)= ρ(0), ∀t ≥ 0, for all ρ(0) ∈ (,ρ− ]. 
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	Figure
	Figure
	If ρ(0) ∈ (ρ− ,ρ], it is clear from Fig. 32 that q>qwhich implies that ρ˙ < 0 until ρ(t)= ρ− at which time ρ˙=0. This implies that for all ρ(0) ∈ (ρ− ,ρ], ρ(t) converges at least asymptotically with time to ρ− . In Appendix A.2 we show that this rate of convergence is exponential, i.e. 
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	|ρ(t) − (ρ− )|≤ ce , ∀ρ(0) ∈ (ρ− ,ρ], 
	j 
	0
	−αt 
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	j 

	ww where c> 0 and α = min{w, w − w˜} > 0. 
	0 

	c) I ∈ Ω, qand qdescribed by equation (33) are plotted in Fig. 33. From Fig. 33, it 
	When 
	3
	1 
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	Figure 33: Fundamental Diagram for 
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	Figure 33: Fundamental Diagram for 
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	ρ q= qare and ρ− , which implies that 
	is clear that the only values of 
	for which 
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	(1−.
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	the system has two isolated equilibrium points ρ= and ρ= when I ∈ Ω. 
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	We show below that ρ= is exponentially stable with a region of attraction [0, ] and ρ= 
	e 
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	ρ
	− 
	(1−.
	0
	)Cd 
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	For ρ(0) ∈ [0, ], we have q= d, q= vf ρ, therefore ρ˙= −vf ρ + d, ∀ρ(0) ∈ [0, ], whose 
	1 
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	vf vf 
	solution is 
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	The equilibrium points and their stability analysis of the single section CTM can be extended to the general N section case. Consider a road segment which is divided into N (N ≥ 2) sections as in Fig. 36. Without loss of generality, we assume that the geometry of all sections is identical and each section has unit length. In the single section case, we assume the density ρ to be the same along the section. We extend this to the case of multiple sections 1 to N where each section has its own density. The cap
	Figure
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	Let ρ =[ρ,ρ, ..., ρN ]be the state vector of the traffc fow system, where ρi represents the density in section i. Section i can absorb the fow min{C, w(ρ− ρi)} from upstream and can 
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	min{vf ρi,w˜(˜ρ− ρi)} into the downstream section. Therefore, the dynamics of the vehicle densities in each section are formulated as: 
	generate the fow 
	j 

	ρ˙i = qi − qi+1, 0 ≤ ρi(0) ≤ ρ, for i =1, 2, ..., N, 
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	q= min{d, C, w(ρ− ρ)}, 
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	qi = min{vf ρi−1,w˜(˜ρ− ρi−1), C, w(ρ− ρi)},i =2, ..., N, (34)
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	min{vf ρN ,w˜(˜ρ− ρN ), (1 − .(ρN ))Cd} if Cd <C qN+1 = , min{vf ρN ,w˜(˜ρ− ρN ),Cd} otherwise 
	( 
	j 
	j 

	where 
	⎧ 
	Cd
	Cd

	⎨
	0 if 0 ≤ ρN ≤ .(ρN )= vf
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	.otherwise 
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	and 0 <.< 1 denotes the level of capacity drop at the outlet of the Nth section. Since we assume that the capacities of all sections 1 to N have the same value C, the capacity drop can NCd <C, which affects the value of qN+1. We know that ∀t ≥ 0, the density vector ρ(t) belongs to the feasible set 
	0 
	only happen at the outlet of section 
	, when 

	S = {ρ|0 ≤ ρi ≤ ρ, for i =1, 2, ..., N}. 
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	Let ρ=[ρ,ρ, ..., ρ]be the equilibrium vector of system (34), obtained by setting ρ˙i =0, e
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	for i =1, 2, ··· ,N. Let qdenote the value of qi when ρ = ρ, then the equilibrium condition of system (34) is given by 
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	ee e 
	q = q = ... = q (35)
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	due to ρ˙i = qi − qi+1 =0, for i =1, 2, ··· ,N. Defne the vector of initial condition ρ(0) = [ρ(0),ρ(0), ..., ρN (0)]and the parameter vector I =(Cd, C, d, .), whose partition sets are the same as in the case of a single section and are shown in Fig. 30. Then the equilibrium states of (34) for all possible I in the sets Ωto Ωand corresponding stability properties are given by the following theorem. 
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	Theorem 6.2. Let 1 = [1, 1, ..., 1]be a vector with N elements each equal to 1. For constant but otherwise arbitrary demand d, we have the following results: 
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	i.e for all ρ(0) ∈ S, ρ(t) converges exponentially fast to ρ= × 1. 
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	All equilibrium states ρ∈ Sare stable in the sense that for any µ> 0, ∃η> 0, such that ∀ρ(0) that satisfy kρ(0) − ρk <η, ρ(t) converges to a ρ¯∈ Sthat satisfes kρ¯− ρk <µ. ∀ρ(0) ∈{ρ|0 ≤ ρi ≤ Cd/vf ,i =1, 2, ..., N}, ρ(t) converges to ρ= × 1 
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	such that ρ(t) converges to ρasymptotically with time. 
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	stable, i.e for all ρ(0) ∈ S, ρ(t) converges exponentially fast to ρ= × 1. 
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	The proof of Theorem 6.2 is given in Appendix B. The above stability properties show that depending on the situation classifed by the operating scenarios Ωto Ωand initial density value in the section, the density will reach an equilibrium I ∈ Ωthere are an infnite number of equilibrium points and when I ∈ Ω, there are two equilibrium points. One in the free fow region and one in the congested region depending on the initial density condition. The objective of feedback is to close the loop so that the system
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	Cd ≥ C, i.e. the downstream capacI ∈ Ωthen the density ρ(t) converges exponentially fast to a unique equilibrium point , which corresponds to the maximum possible 
	The stability analysis of the fow in Section 6.1 shows that if 
	-
	ity is higher than the capacity of the section, i.e. 
	5 
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	min{d,C} 

	vf fow. The steady state speed of fow in the section is vf and the steady state section fow will be q = q= q= min{d, C} according to the model (32)-(33). In this case no control action is needed. When Cd <C and d< (1 − .)Cd, i.e. I ∈ Ω, the demand is lower than the dropped capacity of the downstream segment and therefore the density converges exponentially fast to and the steady state fow speed and fow rate in the section will 
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	(iii) Cd < d,Cd <C, i.e. I ∈ Ω. 
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	In case (i) we showed in previous section that a maximum fow of d = (1 − .)Cd can be maintained at an infnite number of density equilibrium points specifed by an isolated point and an vss ≤ vf . In this case, the control objective is to maintain the maximum fow of d = (1 − .)Cd with a 
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	vf tive is to choose the VSL in a way that the density converges to for all possible initial density 
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	conditions. In case (iii), there is only one equilibrium point for density which is in the high density region (1 − .)Cd. In this case, the maximum possible fow is Cd and corresponds to the density of . However, the convergence of ρ to does not guarantee 
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	that qand qconverge to Cd due to the capacity drop. From equation (33) and Fig. 34, we know 
	1 
	2 

	j 
	Cd 
	ρ
	− 
	(1−.
	0
	)Cd

	that qis a function of ρ. For ρ ∈ [0, ],q= vf ρ, and for ρ ∈ (, ˜],q= 
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	i.e., if ρ converges to from the left side, then qconverges to the maximum value Cd. How
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	ever, if ρ converges to from the right side, qconverges to (1 − .)Cd. Therefore, the control 
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	ρ(t) ∃t> 0, such that ∀t ≥ t,ρ(t) ≤ and limt→∞ ρ(t)= . 
	objective in this case is to choose the VSL so that 
	satisfes the following conditions: 
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	C
	d 
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	vf vf 
	Therefore for all cases (i), (ii) and (iii), the control objective is to choose the VSL control so that ρ(t) converges to the desired equilibrium point , and the fow rate qand qconverge to 
	min{d,C
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	min{d, Cd}. A reasonable control action is to use VSL control to restrict the incoming fow qto the level that is within the capacity constraints of the section at the bottleneck so that the density and fow rate converge to the desired possible values. As shown in Fig. 37, we apply the VSL command v in 
	the maximum possible level which is equal to 
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	the upstream segment of the section under consideration, which is referred to as the VSL zone. All vehicles are asked to follow the speed limit v in the VSL zone and follow the free fow speed limit vf inside the section. Decreasing the speed limit leads to lower fow qfrom the VSL zone to the section as shown in Fig. 37. Fig. 38 shows how the changing of the speed limit v can control the fow rate qentering the section through a nonlinear relationship. Suppose the VSL zone has similar characteristics as the r
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	obtained by simple geometric considerations [26, 55, 56]. In Fig. 38, the red line 
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	fow rate that the VSL zone can absorb from upstream under different densities in the VSL zone 
	Figure
	Figure
	and the blue line dv denotes the fow rate that the VSL zone sends to the section under consideration. However, since the single section model does not include the density in the VSL zone, the fow into the road section from the VSL zone is assumed to be min{d, }, where is the 
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	maximum possible fow in the VSL zone under speed limit v. Then the density ρ in the section is given by the following equation: 
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	q= min{d, ,C,w(ρ− ρ)}, (36) 
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	v + w q= min{vf ρ, w˜(˜ρ− ρ), (1 − .(ρ))Cd}. 
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	We design a VSL controller to overcome capacity drop and achieve the control objectives in all I ∈ Ω, in which d>Cd. Since in equation (36), is the only term in qthat depends on v, we derive the VSL controller using feedback 
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	q= . Then we show in Theorem 7.1 that, for the q= min{d, , C, w(ρ−ρ)}, the derived controller can still guarantee 
	linearization under the assumption that 
	1 
	v+w 
	general equation where 
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	v+w that ρ converges to and q,qconverge to the maximum value Cd. Furthermore, we also show 
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	in Theorem 7.1 below that, when I ∈ Ωi, i.e. d ≤ Cd, the same controller guarantees the con
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	level d. I ∈ Ω, the desired equilibrium point is ρ= . Defne the error state 
	As discussed above, when 
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	vf x = ρ − and recall that the control objective is to force ρ to converge to , i.e. x converge to 
	C
	d 
	C
	d 

	vf vf 
	0 from the left side (ρ ≤ ). If x(0) ≤ 0, that is ρ(0) ≤ , we choose v so that 
	C
	d 
	C
	d 

	vf vf 
	q= q− λx, (37) 
	1 
	2 

	where λ> 0 is a design constant to be selected. Thus we have 
	x˙= ρ˙= q− q= −λx, 
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	which implies that ∀x(0) ≤ 0 and t ≥ 0, x(t) ≤ 0 and x converges to 0 exponentially fast. Since we assume that q= , solving equation (37) for v, we have, 
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	whose denominator is guaranteed to be greater than 0 as we show in detail in the proof of Theorem 7.1. 
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	If x(0) > 0, i.e. ρ(0) > we choose v such that 
	C
	d 

	vf 
	q= q− λ(x + δ), (39) 
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	where δ> 0 is a design constant. Then we have ∀x(0) > 0 
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	x˙= ρ˙= q− q= −λ(x + δ). 
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	x(t)= −δ, i.e. ρ(t)= − δ, where 0 <δ< min{δ, }, thus ρ(t) is in the region
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	t = t, we have x(t) ≤ 0 and controller (38) is switched on which guarantees as shown above that x(t) will converge to zero exponentially fast. Assuming that q= and solving (39) for v, we have 
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	The use of the design constant δis to reduce the incoming fow via VSL so that the density of the section reduces to be within the set [0, ], which guarantees convergence to the equilibrium
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	δwill depend on how aggressively we want the density to move to the “good” free speed region. Using the above VSL controller derivation and assuming that the speed is not allowed to go below zero or exceed the vf , the following equations summarize the VSL controller for the section under the 
	point which corresponds to maximum fow and speed. The choice of 
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	q= , which we will relax subsequently. When I ∈ Ωi, the VSL control 
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	are design constants and med{·} denotes the median of the numbers, which indicates that the vf and the lower bound 0. The upper bound of
	VSL command saturates at the upper bound 
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	λ guarantees that the denominator of v is not 0, which we will show in the proof of Theorem 7.1. The shape of the function v as it varies with ρ is shown in Fig. 39. 
	Figure 39: Switching Logic of VSL Controller 
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	For I ∈ Ω, the VSL control is v = vf . (42) 
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	ρ)}, and guarantees the exponential convergence of the density to the desired equilibrium point q= q= Cd. 
	In Theorem 7.1 below, we show that the above controller also works for any value of 
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	and the exponential convergence of the fow rate to the maximum possible value of 
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	I ∈ Ωi, i.e. d ≤ Cd, controller (41) guarantees the exponential conver
	Furthermore, when 
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	a) I ∈ Ωi, i.e. Cd <C, and consider the VSL controller (41). The closed-loop system 
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	(36), (41) has a unique equilibrium point ρ= . In addition, ∀ρ(0) ∈ [0, ], ρ(t)
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	tially fast which brings it to the region where ρ(t) converges to ρexponentially fast. The fow min{d, Cd} and vf respectively with the same rate. 
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	b) I ∈ Ω, i.e. Cd ≥ C, and consider the VSL controller (42). System (36),(42) has a unique 
	Let 
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	equilibrium point ρ= . In addition, ∀ρ(0) ∈ [0,ρ], ρ(t) converges to ρexpo
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	nentially fast. The fow rate and speed converge exponentially fast to the desired values of 
	min{d, C} and vf respectively. 
	The proof of Theorem 7.1 is given in Appendix C. Theorem 7.1 shows that the VSL controller 
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	I ∈ Ωi, the density, fow rate and fow speed converge 
	(41), (42) guarantees that for all cases 

	i=1 
	exponentially fast to unique values that correspond to maximum possible fow through the section for all initial density conditions within the set [0,ρ]. Theorem 7.1 shows in an analytically rigorous manner that VSL control can stabilize the fow in the section and force it to converge to the maximum possible fow under any situation. This maximum fow depends on the characteristics d C, Cd as well as capacity drop level .. It is also clear from the analysis of the open-loop system that without the VSL control 
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	The analysis in Section 6.2 shows that the stability properties of the open-loop N-section system are similar to those of the single-section system. For the cases I ∈ Ωand I ∈ Ω, ρ(t) converges 
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	exponentially fast to the unique equilibrium state ρ= × 1 and ρ= × 1 respectively, 
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	which corresponds to the maximum possible fow rate. In these two cases no control action is needed. When I ∈ Ω∪ Ω, the control objective is to stabilize the system at the equilibrium state ρ= 
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	× 1, at which the maximum possible fow rate d is achieved and the densities in each section 
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	vf 
	are stabilized at the lowest possible value whereas the speed of fow converges to the free fow vf . When I ∈ Ω, the maximum possible fow rate is Cd, which corresponds to the equilibrium state ρ= × 1. From equation (34), we know that due to capacity drop 
	speed 
	4
	e 
	C
	d 

	vf 
	lim qN+1(ρN ) = lim vf ρN = Cd 
	Cd Cd
	Cd Cd

	ρN →()− ρN → 
	vf vf 
	and 
	lim qN+1(ρN ) = lim (1 − .)Cd = (1 − .)Cd. 
	0
	0

	Cd Cd
	Cd Cd

	ρN →()+ ρN → 
	vf vf 
	Cd, we want to choose 
	Cd, we want to choose 
	Therefore, in this case, in order to achieve the maximum possible fow rate 

	the VSL control so that there exits t≥ 0 such that ∀t ≥ t, ρN (t) ≤ and ρi(t) converges 
	0 
	0
	C
	d 


	Figure
	Figure
	vf 
	vf 
	vf 

	to Cd , for i vf 
	to Cd , for i vf 
	= 
	1, 2, ..., N. Furthermore we want to achieve a steady state fow speed vf 
	in all 

	sections. 
	sections. 


	Similar to the single section case, the VSL controller is applied to the N-section road segment as shown in Fig. 40. All vehicles in the upstream segment of section 1 are asked to follow the VSL 
	Figure
	Figure 40: VSL Controlled Road Segment 
	Figure 40: VSL Controlled Road Segment 


	command vand all vehicles in section i follow the VSL command vi, for i =1, 2, ..., N − 1. The N vf . i vi ≤ vf , i =1, 2, ..., N − 1, then the fundamental i si(ρi) denotes the ability of sec-
	0 
	speed limit in section 
	is set to the constant free fow speed 
	If the speed limit of section 
	is set to be 
	diagram of section 
	is distorted as shown in Fig. 41. In Fig. 41, 

	Figure
	Figure 41: Fundamental Diagram of Section i 
	Figure 41: Fundamental Diagram of Section i 


	tion i to absorb traffc fow from section i − 1. We have si(ρi) = min{,w(ρ− ρi)},i = 
	v
	i
	wρ
	j 
	j 

	vi+w 
	1, 2, ..., N − 1. di(ρi) denotes the traffc fow generated by section i to go into section i +1. We 
	viwρ
	viwρ
	j

	have di(ρi) = min{viρi, },i =1, 2, ...N − 1. Therefore, in Fig. 40, we have 
	vi+w 
	vi−1wρviwρ
	j 
	j 

	qi = min{di−1(ρi−1),si(ρi)} = min{vi−1ρi−1, ,,w(ρ− ρi)},i =2, ..., N − 1. vi−1 + wvi + w 
	j 

	Figure
	Figure
	For the road segment upstream section 1, i.e. the segment with speed limit v, whose density = min{d, }, which is independent of the density in the section with speed limit v, therefore 
	0
	is not included in system (34), we assume the fow rate generated by this segment to be 
	d
	0 
	v
	0
	wρ
	j 
	0

	v+w 
	0

	vwρvwρ
	0
	j 
	1
	j 

	q= min{d,s(ρ)} = min{d, , ,w(ρ− ρ)}. 
	1 
	0
	1
	1
	j 
	1

	v+ wv+ w 
	0 
	1 

	N vf , therefore section N can absorb a fow of sN (ρN )= min{C, w(ρ− ρN )}, therefore 
	The speed limit in section 
	is constant 
	j 

	vN−1wρ
	j 

	qN = min{dN−1(ρN−1),sN (ρN )} = min{vN−1ρN−1, ,C,w(ρ− ρN )}. vN−1 + w 
	j 
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	7.3. Numerical Experiments 
	7.3. Numerical Experiments 
	In this section, we use numerical simulations to demonstrate the analytical results of the previous sections, for both open-loop and closed-loop systems. The simulations are performed on a two-section road network, whose parameters are: C = 6500 veh/h,w = 20 mi/h,ρ= 425 veh/mi,vf = 65 mi/h,w˜ = 10 mi/h,ρ˜= 750 veh/mi,ρc = 100 veh/mi. When I belongs to Ωto Ω, we set the downstream capacity Cd = 5200 veh/h, which is less than C, and .=0.15. When I belongs to Ω, we set Cd = 7000 veh/h, which is greater than C.
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	I ∈ Ω(Cd < C,d < (1 − .)Cd). Both the open-loop and closed-loop densities converge to the same low density equilibrium state. Single low density equilibrium state. 
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	Fig. 42 -Fig. 46 show the phase portraits of the two-section open-loop and closed-loop systems when I belongs to Ωto Ω. When I ∈ Ω, all the density state trajectories of the open-loop system, shown in Fig. 42a, converge to the unique equilibrium state ρ=( , ) = (61.5, 61.5),
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	indicated by the red dot. In Fig.42b, all density state trajectories of the closed-loop system converge to the same equilibrium state as in the open-loop case as expected from the analysis. When I ∈ Ω, all density state trajectories of the open-loop system shown in Fig.43a converge to the isolated equilibrium state ρ=( , ) = (68, 68), indicated by the red dot in Fig. 43a, or to the 
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	I ∈ Ω(Cd < C,d = (1 − .)Cd). The open-loop system has an infnite number of equilibrium density states which do not correspond to the maximum possible fow speed. Closed-loop system has a single low density equilibrium state. Equilibrium state; Equilibrium manifold. 
	Figure 43: Phase portrait when 
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	I ∈ Ω(Cd < C, (1 − .)Cd <d ≤ Cd). The open-loop system has two equilibrium density states one in the low density and the other in the high density region. The closed-loop system has a unique equilibrium state at low density. 
	44: Phase portrait when 
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	I ∈ Ω(Cd < C,d > Cd). The open-loop system has a unique equilibrium state in the high density region. The closed-loop system has a unique equilibrium state at low density. Low density equilibrium state; High density equilibrium state. 
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	I ∈ Ω(Cd ≥ C). Same open-loop and closed-loop response. Single low density equilibrium state. 
	I ∈ Ω(Cd ≥ C). Same open-loop and closed-loop response. Single low density equilibrium state. 
	Figure 46: Phase portrait when 
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	(204, 204), indicated by the red dot. The phase portrait of the corresponding closed-loop system is plotted in Fig. 45b. As shown in Theorem 7.2, all density state trajectories converge to the desired equilibrium state ρ=(Cd/vf ,Cd/vf ) = (80, 80), indicated by the red dot in Fig. ρconverges to ρ= 80 when the initial condition satisfes ρ(0) ≤ 80. If ρ(0) > 80, ρ(t) decreases to ρ= 75 frst, then increases and converges to 80, which guarantees Cd = 5200 veh/h. When I ∈ Ω, capacity drop will not occur since th
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	4420 veh/h. On the other hand, q= (1 − .)Cd = 4420 veh/h remains constant during the entire q= (1 − .)Cd = 4420 veh/h at the beginning of the Cd = 5200 veh/h. qis due to the fact that ρdecreases and crosses the value , at which 
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	qjumps from (1 − .)Cd to Cd. The values of qand qalso have a jump between t =1 min and t =2 min. This jump is caused by the switching of the VSL control (48) which at this time does not affect qsince qis only a function of ρ, and does not jump when the VSL switches. Fig. 48 shows the performance of the closed-loop system in the same scenario as in Fig. 47, however with perturbed vf . In this case, the actual free fow speed vf =0.9vfn, where vfn is the nominal value of vf , based on which the controller (48)
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	damentals of the design and analysis. As shown in Fig. 48b, we modifed the controller (48) as xi = ρi − ( − 5) = ρi − 75,i =1, 2 and increasing the 
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	λi = 100 mi/h, i =0, 1. The modifed controller tries to stabilize the density vector at ρ= (75, 75), which gives a margin between ρand the boundary of capacity drop. The increased feedback gains are able to suppress the steady state error to make sure that the steady state value of ρ is close to ρthus capacity drop does not occur. With the modifed VSL controller, the steady state density is ρ = (74.2, 78.44), and the steady state traffc fow is q= q= q= 4590 veh/h, as shown in Fig. 48b. This a simple case ho
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	Section 7 shows the possibility of achieving the maximum possible fow rate at a bottleneck and avoiding capacity drop, under the assumption that we have perfect knowledge of model parameters of the CTM and accurate measurement of the vehicle densities. We have shown as well in section 7 that due to the discontinuous nature of the desired equilibrium point, any disturbance or measurement noise may lead to a oscillatory behavior of the closed-loop system. We also demonstrate with numerical simulations that wi
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	8.1. Robust Control of Traffc Flow in a Single-Section Road Segment 
	8.1. Robust Control of Traffc Flow in a Single-Section Road Segment 
	Consider a single road section of in Fig. 37, with a constant disturbance µ, which may be introduced by the ramp fows or biased measurement of the fow rate, the evolution of ρ with respect to time is given by the following differential equation: 
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	We assume the constant disturbance µ satisfy that |µ|≤ µm . Cd, that is, comparing to the bottleneck capacity, the magnitude of the disturbance is very small, which also guarantees that 
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	t, at which x(t) crosses the boundary and gets into S, and x(t) > − and x(t) <x(t). 
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	we have shown that if x(t) ∈ S∩{x|− <x< −}, x(t) will not leave S. 
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	1 
	2
	1
	0
	1
	1
	0
	2
	2
	0
	0
	Consequently, (63) holds for all 
	0
	1
	-

	Theorem 8.1 shows that if d + µ ≥ vf ρ, then controller (56) forces xto converge to 0 asymptotd + µ<vf ρ, the dynamics and the stability properties of the closed-loop system is shown in the following theorem. 
	?
	1 
	-
	ically. In the case that 
	?

	Theorem 8.2. Consider the system (52)(53) with controller (56), if d + µ<vf ρ, then ∀x(0) ∈ [−ρ,ρ− ρ], x(t) converges to − ρasymptotically. 
	?
	1
	?
	j 
	?
	1
	d+µ 
	? 

	vf 
	Proof. Since d + µ<vf ρ, then ∃η> 0, such that d + µ ≤ vf ρ− η. Similar to the case in x(t) ≤ ρ− ρand k(t)= k(t). According to (52)(53), we have that 
	?
	? 
	Theorem 8.1, we only need to consider the case where 
	1
	0
	L 
	? 
	0
	2
	0

	x˙≤ d − q+ µ = d + µ − (vf ρ+ vf x) 
	1 
	2 
	? 
	1

	Figure
	Figure
	thus for all x(t) ≤ ρ− ρ, x(t) ≤ − ρ, ∀t ≥ t. Therefore 
	1
	0
	L 
	? 
	1
	d+µ 
	? 
	0

	vf 
	Z 
	t 

	µµ 
	x(t)= x(t)+ x(t)dτ −≤ x(t) −− η(t − t),t ≥ t
	2
	2
	0
	1
	2
	0
	0
	0 

	t
	0 
	λ
	2 
	λ
	2 

	which decreases to negative infnity as t increases. Therefore qsaturates at d. 
	1 

	x˙ = d + µ − (vf ρ+ vf x) 
	1 
	? 
	1

	Thus xconverges to − ρ. 
	1 
	d+µ 
	? 

	vf 
	Therefore, with the controller (56), if the sum of the upstream demand d and the disturbance is greater than or equal to the predetermined equilibrium fow, the density in the section will converge to the equilibrium point ρ. If the sum of the upstream demand d and the disturbance is less than the predetermined equilibrium fow, the density converges to , at which the steady 
	-
	? 
	d+µ 

	vf 
	state fow is d + µ, which is the maximum possible value. Note that the selection of ρaffects the distance from the switching point to the desired equilibrium point. According to the proof of Theorem 8.1, we can select ρ= ρwhich minimizes the distance while still guarantees the convergence. In addition, since ρ(t) always converges to ρfrom the left side, ρcan be arbitrarily close to . 
	L 
	L 
	? 
	-
	? 
	? 
	C
	d 

	vf 

	8.2. Numerical Experiments 
	8.2. Numerical Experiments 
	In this section, we use numerical simulations to demonstrate the analytical results of the previous sections. The simulations are performed on a single-section road network, whose parameters are: C = 6500 veh/h,w = 20 mi/h,ρ= 425 veh/mi,vf = 65 mi/h,w˜ =10 mi/h,ρ˜= 750 veh/mi,ρc = 100 veh/mi,d = 6000 veh/h,µ = 300 veh/h. We apply controller (56) to the = 200,λ= 900,ρ= ρ= 75 veh/mi,ρ= 79 veh/mi,µm = 350 veh/h,qs = 3200 veh/h. The initial condition ρ(0) = 120 veh/mi. Figure 51 shows the behavior of the densit
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	perturbed single-section system with the following design constants: 
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	Figure 51: System Behavior of the Perturbed Closed-loop System 
	Figure 51: System Behavior of the Perturbed Closed-loop System 


	9 Conclusion 
	9 Conclusion 
	In this report, based on the frst order cell transmission model, we conducted design, analyze and evaluate the performance of several integrated highway traffc fow control strategies in both macroscopic and microscopic simulations. We discovered that forced lane change at vicinity of the bottleneck is a major reason of the capacity drop phenomenon. We proposed a lane change controller which provides lane change recommendations to upstream vehicles in order to avoid the capacity drop. A feedback linearizatio
	-
	-
	-

	Figure
	Figure


	References 
	References 
	[1] D. Schrank, B. Eisele, T. Lomax, and J. Bak, “2015 urban mobility scorecard,” Texas A&M Transportation Institute. The Texas A&M University System, 2015. 
	[2] P. Marchesini and W. A. M. Weijermars, The relationship between road safety and congestion on motorways. SWOV Institute for Road Safety Research, 2010. 
	-

	[3] A. Abadi, P. A. Ioannou, and M. M. Dessouky, “Multimodal dynamic freight load balancing,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp. 356–366, 2016. 
	-

	[4] V. A. Butakov and P. Ioannou, “Personalized driver/vehicle lane change models for adas,” IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4422–4431, 2015. 
	[5] Y. Zhang and P. A. Ioannou, “Combined variable speed limit and lane change control for highway traffc,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 7, pp. 1812–1823, 2017. 
	[6] M. Papageorgiou, H. Hadj-Salem, and J.-M. Blosseville, “Alinea: A local feedback control law for on-ramp metering,” Transportation Research Record, no. 1320, 1991. 
	[7] X.-Y. Lu, P. Varaiya, R. Horowitz, D. Su, and S. Shladover, “Novel freeway traffc control with variable speed limit and coordinated ramp metering,” Transportation Research Record: Journal of the Transportation Research Board, no. 2229, pp. 55–65, 2011. 
	[8] E. Van den Hoogen and S. Smulders, “Control by variable speed signs: results of the dutch experiment,” in Road Traffc Monitoring and Control, 1994., Seventh International Conference on. IET, 1994, pp. 145–149. 
	-

	[9] Y. Wang and P. Ioannou, “Dynamic variable speed limit control: Design, analysis and benefts,” Ph.D. dissertation, University of Southern California, 2011. 
	-

	[10] X.-Y. Lu and S. E. Shladover, “Review of variable speed limits and advisories,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2423, no. 1, pp. 15–23, 2014. 
	-

	[11] M. Hadiuzzaman, T. Z. Qiu, and X.-Y. Lu, “Variable speed limit control design for relieving congestion caused by active bottlenecks,” Journal of Transportation Engineering, 2012. 
	[12] S. Baldi, I. Michailidis, E. Kosmatopoulos, A. Papachristodoulou, and P. Ioannou, “Convex design control for practical nonlinear systems,” IEEE Transactions on Automatic Control, vol. 59, no. 7, pp. 1692–1705, July 2014. 
	[13] J. M. Torne Santos, D. Rosas, and F. Soriguera, “Evaluation of speed limit management on c-32 highway access to barcelona,” in Transportation Research Board 90th Annual Meeting, no. 11-2397, 2011. 
	Figure
	Figure
	[14] K. Gao, “Multi-objective traffc management for livability,” Ph.D. dissertation, MS thesis, TU Delft, Delft, The Netherlands, 2012. 
	[15] L. Kejun, Y. Meiping, Z. Jianlong, and Y. Xiaoguang, “Model predictive control for variable speed limit in freeway work zone,” in Control Conference, 2008. CCC 2008. 27th Chinese. IEEE, 2008, pp. 488–493. 
	[16] P. Ioannou, Y. Wang, A. Abadi, and V. Butakov, “Dynamic variable speed limit control: Design, analysis and benefts,” Tech. Rep., 2012. 
	-

	[17] Y. Wang and P. Ioannou, “New model for variable speed limits,” Transportation Research Record: Journal of the Transportation Research Board, no. 2249, pp. 38–43, 2011. 
	[18] S. Smulders, “Control of freeway traffc fow by variable speed signs,” Transportation Research Part B: Methodological, vol. 24, no. 2, pp. 111–132, 1990. 
	-

	[19] M. Papageorgiou, E. Kosmatopoulos, and I. Papamichail, “Effects of variable speed limits on motorway traffc fow,” Transportation Research Record: Journal of the Transportation Research Board, no. 2047, pp. 37–48, 2008. 
	[20] A. Muralidharan and R. Horowitz, “Computationally effcient model predictive control of freeway networks,” Transportation Research Part C: Emerging Technologies, vol. 58, pp. 532–553, 2015. 
	[21] J. R. D. Frejo, A. Nu´ ˜nez, B. De Schutter, and E. F. Camacho, “Hybrid model predictive control for freeway traffc using discrete speed limit signals,” Transportation Research Part C: Emerging Technologies, vol. 46, pp. 309–325, 2014. 
	-

	[22] B. Khondaker and L. Kattan, “Variable speed limit: A microscopic analysis in a connected vehicle environment,” Transportation Research Part C: Emerging Technologies, vol. 58, pp. 146–159, 2015. 
	[23] R. C. Carlson, I. Papamichail, and M. Papageorgiou, “Comparison of local feedback controllers for the mainstream traffc fow on freeways using variable speed limits,” Journal of Intelligent Transportation Systems, vol. 17, no. 4, pp. 268–281, 2013. 
	-

	[24] G.-R. Iordanidou, C. Roncoli, I. Papamichail, and M. Papageorgiou, “Feedback-based mainstream traffc fow control for multiple bottlenecks on motorways,” Intelligent Transportation Systems, IEEE Transactions on, vol. 16, no. 2, pp. 610–621, 2015. 
	-
	-

	[25] E. R. M¨uller, R. C. Carlson, W. Kraus, and M. Papageorgiou, “Microsimulation analysis of practical aspects of traffc control with variable speed limits,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 1, pp. 512–523, 2015. 
	-

	[26] H.-Y. Jin and W.-L. Jin, “Control of a lane-drop bottleneck through variable speed limits,” Transportation Research Part C: Emerging Technologies, vol. 58, pp. 568–584, 2015. 
	Figure
	Figure
	[27] A. Hegyi, S. Hoogendoorn, M. Schreuder, H. Stoelhorst, and F. Viti, “Specialist: A dynamic speed limit control algorithm based on shock wave theory,” in Intelligent Transportation Systems, 2008. ITSC 2008. 11th International IEEE Conference on. IEEE, 2008, pp. 827– 832. 
	[28] J. Zhang, H. Chang, and P. A. Ioannou, “A simple roadway control system for freeway traffc,” in 2006 American Control Conference. IEEE, 2006, pp. 6–pp. 
	-

	[29] H. Chang, Y. Wang, J. Zhang, and P. A. Ioannou, “An integrated roadway controller and its evaluation by microscopic simulator vissim,” in Control Conference (ECC), 2007 European. IEEE, 2007, pp. 2436–2441. 
	[30] M. Abdel-Aty, J. Dilmore, and A. Dhindsa, “Evaluation of variable speed limits for real-time freeway safety improvement,” Accident analysis & prevention, vol. 38, no. 2, pp. 335– 345, 2006. 
	[31] Z. Li, P. Liu, W. Wang, and C. Xu, “Development of a control strategy of variable speed limits to reduce rear-end collision risks near freeway recurrent bottlenecks,” Intelligent Transportation Systems, IEEE Transactions on, vol. 15, no. 2, pp. 866–877, 2014. 
	[32] Y. Zhang and P. A. Ioannou, “Environmental impact of combined variable speed limit and lane change control: A comparison of MOVES and CMEM model,” IFAC-PapersOnLine, vol. 49, no. 3, pp. 323 – 328, 2016, 14th IFAC Symposium on Control in Transportation Systems CTS 2016, Istanbul, Turkey, 18-20 May 2016. 
	[33] ——, “Combined variable speed limit and lane change control for truck-dominant highway segment,” in 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2015, pp. 1163–1168. 
	-

	[34] S. K. Zegeye, B. De Schutter, H. Hellendoorn, and E. Breunesse, “Reduction of travel times and traffc emissions using model predictive control,” in American Control Conference, 2009. ACC’09. IEEE, 2009, pp. 5392–5397. 
	[35] G. Horton, G. Hitchcock, C. Chiff, A. Martino, C. Doll, V. Zeidler, H. Bruhova-Foltynova, 
	Z. Sperat, R. Jordova, A. Roumboutsos, and I. Skinner, “Research Theme Analysis Report Urban Mobility,” European Union, Tech. Rep., 2016. 
	-

	[36] Caltrans, “Ramp metering design manual,” California Department of Transportation, Sacramento, United States, Tech. Rep., apr 2016. 
	-

	[37] H.-U. Oh and V. P. Sisiopiku, “A modifed alinea ramp metering model,” in Transportation Research Board 80th Annual Meeting, 2001. 
	[38] E. Smaragdis and M. Papageorgiou, “Series of new local ramp metering strategies: Emmanouil smaragdis and markos papageorgiou,” Transportation Research Record: Journal of the Transportation Research Board, no. 1856, pp. 74–86, 2003. 
	-

	Figure
	Figure
	[39] M. Papageorgiou and A. Kotsialos, “Freeway ramp metering: an overview,” IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 4, pp. 271–281, Dec 2002. 
	-

	[40] Caltrans District 7, “Ramp Metering Annual Report,” Los Angeles and Ventura Counties, Tech. Rep., 2006. 
	[41] X.-Y. Lu, T. Z. Qiu, P. Varaiya, R. Horowitz, and S. E. Shladover, “Combining variable speed limits with ramp metering for freeway traffc control,” in Proceedings of the 2010 American Control Conference. IEEE, 2010, pp. 2266–2271. 
	[42] J. R. Scariza, “Evaluation of coordinated and local ramp metering algorithms using microscopic traffc simulation,” Ph.D. dissertation, Massachusetts Institute of Technology, 2003. 
	-

	[43] A. K. Rathi and Z. A. Nemeth, FREESIM: A MICROSCOPIC SIMULATION MODEL OF FREEWAY LANE CLOSURES (ABRIDGMENT), 1986, no. 1091. 
	[44] H. S. Mahmassani and R. Jayakrishnan, “Dynamic analysis of lane closure strategies,” Journal of transportation engineering, vol. 114, no. 4, pp. 476–496, 1988. 
	-

	[45] L. Schaefer, J. Upchurch, and S. Ashur, “An evaluation of freeway lane control signing using computer simulation,” Mathematical and computer modelling, vol. 27, no. 9, pp. 177– 187, 1998. 
	-

	[46] M. Jha, D. Cuneo, and M. Ben-Akiva, “Evaluation of freeway lane control for incident management,” Journal of transportation engineering, vol. 125, no. 6, pp. 495–501, 1999. 
	-

	[47] W.-L. Jin, “A multi-commodity lighthill–whitham–richards model of lane-changing traffc fow,” Transportation Research Part B: Methodological, vol. 57, pp. 361–377, 2013. 
	[48] J. A. Laval and C. F. Daganzo, “Lane-changing in traffc streams,” Transportation Research Part B: Methodological, vol. 40, no. 3, pp. 251–264, 2006. 
	[49] L. D. Baskar, B. De Schutter, and H. Hellendoorn, “Model-based predictive traffc control for intelligent vehicles: Dynamic speed limits and dynamic lane allocation,” in Intelligent Vehicles Symposium, 2008 IEEE. IEEE, 2008, pp. 174–179. 
	[50] C. Roncoli, I. Papamichail, and M. Papageorgiou, “Model predictive control for multi-lane motorways in presence of VACS,” in 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), Oct 2014, pp. 501–507. 
	-

	[51] A. Alessandri, A. Di Febbraro, A. Ferrara, and E. Punta, “Optimal control of freeways via speed signalling and ramp metering,” Control Engineering Practice, vol. 6, no. 6, pp. 771– 780, 1998. 
	[52] C. Caligaris, S. Sacone, and S. Siri, “Optimal ramp metering and variable speed signs for multiclass freeway traffc,” in 2007 European Control Conference. IEEE, 2007, pp. 1780– 1785. 
	Figure
	Figure
	[53] A. Hegyi, B. De Schutter, and H. Hellendoorn, “Model predictive control for optimal coordination of ramp metering and variable speed limits,” Transportation Research Part C: Emerging Technologies, vol. 13, no. 3, pp. 185–209, 2005. 
	-

	[54] I. Papamichail, K. Kampitaki, M. Papageorgiou, and A. Messmer, “Integrated ramp metering and variable speed limit control of motorway traffc fow,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 14 084–14 089, 2008. 
	-

	[55] M. Hadiuzzaman and T. Z. Qiu, “Cell transmission model based variable speed limit control for freeways,” Canadian Journal of Civil Engineering, vol. 40, no. 1, pp. 46–56, 2013. 
	[56] A. Csik´os and B. Kulcs´ar, “Variable speed limit design based on mode dependent cell transmission model,” Transportation Research Part C: Emerging Technologies, vol. 85, pp. 429– 450, 2017. 
	-

	[57] G. Gomes, R. Horowitz, A. A. Kurzhanskiy, P. Varaiya, and J. Kwon, “Behavior of the cell transmission model and effectiveness of ramp metering,” Transportation Research Part C: Emerging Technologies, vol. 16, no. 4, pp. 485–513, 2008. 
	[58] E. Lovisari, G. Como, A. Rantzer, and K. Savla, “Stability analysis and control synthesis for dynamical transportation networks,” arXiv preprint arXiv:1410.5956, 2014. 
	[59] A. Srivastava, W.-L. Jin, and J.-P. Lebacque, “A modifed cell transmission model with realistic queue discharge features at signalized intersections,” Transportation Research Part B: Methodological, vol. 81, pp. 302–315, 2015. 
	-

	[60] M. Kontorinaki, A. Spiliopoulou, C. Roncoli, and M. Papageorgiou, “Capacity drop in frst-order traffc fow models: Overview and real-data validation,” in Transportation Research Board 95th Annual Meeting, no. 16-3541, 2016. 
	[61] S. Coogan and M. Arcak, “Stability of traffc fow networks with a polytree topology,” Automatica, vol. 66, pp. 246–253, 2016. 
	-

	[62] I. Karafyllis and M. Papageorgiou, “Global exponential stability for discrete-time networks with applications to traffc networks,” IEEE Transactions on Control of Network Systems, vol. 2, no. 1, pp. 68–77, 2015. 
	[63] M. Kontorinaki, I. Karafyllis, and M. Papageorgiou, “Global exponential stabilisation of acyclic traffc networks,” International Journal of Control, pp. 1–21, 2017. 
	[64] J. H. Banks, “The two-capacity phenomenon: some theoretical issues,” Transportation Research Record, no. 1320, 1991. 
	-

	[65] F. L. Hall and K. Agyemang-Duah, “Freeway capacity drop and the defnition of capacity,” Transportation Research Record, no. 1320, 1991. 
	[66] VISSIM 5.30-04 User Manual, PTV-Vision, Karlsruhe, Germany, feb 2011. 
	Figure
	Figure
	[67] H. K. Khalil and J. Grizzle, Nonlinear systems. Prentice hall New Jersey, 1996, vol. 3. 
	[68] X.-Y. Lu, P. Varaiya, R. Horowitz, D. Su, and S. E. Shladover, “A new approach for combined freeway variable speed limits and coordinated ramp metering,” in 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE, 2010, pp. 491–498. 
	-
	-

	[69] R. C. Carlson, I. Papamichail, and M. Papageorgiou, “Local feedback-based mainstream traffc fow control on motorways using variable speed limits,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1261–1276, 2011. 
	-

	[70] C. D. of Transportation. (2015) Caltrans performance measurement system (PeMS). 
	[Online]. Available: http://pems.dot.ca.gov/ 

	[71] M. Wright, G. Gomes, R. Horowitz, and A. A. Kurzhanskiy, “A new model for multi-commodity macroscopic modeling of complex traffc networks,” arXiv preprint arXiv:1509.04995, 2015. 
	[72] EPA, “Motor vehicle emission simulator (moves) user guide,” US Environmental Protection Agency, 2014. 
	[73] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct solution of optimal control problems,” in Proceedings of the IFAC World Congress, 1984. 
	[74] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct multiple shooting algorithms for optimal robot control,” in Fast motions in biomechanics and robotics. Springer, 2006, pp. 65–93. 
	[75] J. Andersson, “A General-Purpose Software Framework for Dynamic Optimization,” PhD thesis, Arenberg Doctoral School, KU Leuven, Department of Electrical Engineering (ESAT/SCD) and Optimization in Engineering Center, Kasteelpark Arenberg 10, 3001Heverlee, Belgium, October 2013. 
	-

	[76] A. W¨achter and L. T. Biegler, “On the implementation of an interior-point flter line-search algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006. 
	[77] J. Lebacque, “Two-phase bounded-acceleration traffc fow model: analytical solutions and applications,” Transportation Research Record: Journal of the Transportation Research Board, no. 1852, pp. 220–230, 2003. 
	[78] C. Roncoli, M. Papageorgiou, and I. Papamichail, “Traffc fow optimisation in presence of vehicle automation and communication systems–Part I: A frst-order multi-lane model for motorway traffc,” Transportation Research Part C: Emerging Technologies, vol. 57, pp. 241–259, 2015. 
	Figure
	Figure
	[79] A. Srivastava and W. Jin, “A lane changing cell transmission model for modeling capacity drop at lane drop bottlenecks,” in Transportation Research Board 95th Annual Meeting. TRB, 2016, pp. 16–5452. 
	[80] C. F. Daganzo, “The cell transmission model: A dynamic representation of highway traffc consistent with the hydrodynamic theory,” Transportation Research Part B: Methodological, vol. 28, no. 4, pp. 269–287, 1994. 
	[81] P. A. Ioannou and J. Sun, Robust adaptive control. Dover Publications, Mineola, New York, 2012. 

	Data Management Plan 
	Data Management Plan 
	The data management plan of this research includes the disclosure of raw simulation data of the combined variable speed limit and lane change control (Section 3) and the Coordinated Variable Speed Limit, Ramp Metering and Lane Change Controller (Section 4). The simulations are performend with PTV-VISSIM 5.30. For the simulations in Section 3, data is generated under the following traffc demand levels, scenarios, control modes and data types: 
	-
	-

	• 
	• 
	• 
	• 
	Demand levels: 

	1. 6000 veh/hr 2. 6500 veh/hr 

	• 
	• 
	• 
	Scenarios: 

	1. 
	1. 
	1. 
	scenario 1: incident lasts for 30 minutes 

	2. 
	2. 
	scenario 2: incident lasts for 10 minutes 

	3. 
	3. 
	scenario 3: incident lasts for 60 minutes (cropped to the frst 45 minutes of incidents for evaluation to demonstrate the case of long-term bottleneck). 



	• 
	• 
	• 
	Control Modes: 

	1. 
	1. 
	1. 
	no control 

	2. 
	2. 
	combined VSL and LC control. 



	• 
	• 
	• 
	Data Types: 

	1. 
	1. 
	1. 
	vehicle densities 

	2. 
	2. 
	fow rates 

	3. 
	3. 
	VSL control commands 
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	All data is generated from 10 rounds of Monte Carlo simulations, which are indexed from 0 to 9. For the simulations in Section 4, data is generated under one scenario and demand level which is described in Section 4.4, and different control modes and data types as listed below. 
	• 
	• 
	• 
	• 
	Control Modes: 

	1. 
	1. 
	1. 
	RM control only 

	2. 
	2. 
	Coordinated VSL, LC and RM control 



	• 
	• 
	• 
	Data Types: 

	1. 
	1. 
	1. 
	vehicle densities 

	2. 
	2. 
	fow rates 

	3. 
	3. 
	VSL control commands 

	4. 
	4. 
	RM control commands 

	5. 
	5. 
	Ramp queue length 




	All data is generated from 10 rounds of Monte Carlo simulations, which are indexed from 0 to 9. The units of data in each data type is listed in Table 9. 
	Table 9: Data Units 
	Data Type 
	Data Type 
	Data Type 
	Units 

	Vehicle density 
	Vehicle density 
	number of vehicles per mile 

	Flow rate 
	Flow rate 
	number of vehicles per 5 seconds 

	VSL control commands 
	VSL control commands 
	miles per hour 

	RM control commands 
	RM control commands 
	number of vehicles per hr 

	Ramp queue length 
	Ramp queue length 
	number of vehicles 
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